精英家教网 > 高中数学 > 题目详情
在△ABC中,角A、B、C的对边分别为a,b,c,且满足(
2
a-c)
BA
BC
=c
CB
CA

(1)求角B的大小;
(2)若|
BA
-
BC
|=
6
,求△ABC面积的最大值.
分析:(1)利用向量数量积的运算法则化简已知可得(
2
a-c)cosB=bcosC
,然后利用正弦定理化简后,根据sinA不为0得到cosB的值,根据B的范围及特殊角的三角函数值即可求出B的度数;
(2)根据向量的减法法则由|
BA
-
BC
|=
6
得到|
CA
|=
6
即得到b的平方等于6,然后根据余弦定理表示出b的平方,把b的平方代入后,利用基本不等式即可求出ac的最大值,根据三角形的面积公式,利用ac的最大值及B的度数求出sinB的值,即可得到面积的最大值.
解答:解:(1)(
2
a-c)
BA
BC
=c
CB
CA

可化为:(
2
a-c)
|BA
|•|
BC|
cosB=c
|CB|
|CA
|

即:(
2
a-c)cacosB=cabcosC

(
2
a-c)cosB=bcosC

根据正弦定理有(
2
sinA-sinC)cosB=sinBcosC

2
sinAcosB=sin(C+B)
,即
2
sinAcosB=sinA

因为sinA>0,所以cosB=
2
2
,即B=
π
4

(II)因为|
BA
-
BC
|=
6
,所以|
CA
|=
6
,即b2=6,
根据余弦定理b2=a2+c2-2accosB,
可得6=a2+c2-
2
ac

有基本不等式可知6=a2+c2-
2
ac≥2ac-
2
ac=(2-
2
)ac

ac≤3(2+
2
)

故△ABC的面积S=
1
2
acsinB=
2
4
ac≤
3(
2
+1)
2

即当a=c=
6+3
2
时,
△ABC的面积的最大值为
3(
2
+1)
2
点评:此题考查学生灵活运用平面向量的数量积的运算法则,灵活运用正弦、余弦定理及三角形的面积公式化简求值,是一道综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案