精英家教网 > 高中数学 > 题目详情
5.已知平面内有三个向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$,其中∠AOB=60°,∠AOC=30°,且$|\overrightarrow{OA}|=2$,$|\overrightarrow{OB}|=2$,$|\overrightarrow{OC}|=4\sqrt{3}$,若$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则λ+μ=4或2.

分析 以OC为对角线,以OA,OB方向为邻边作平行四边形,求出平行四边形OA方向上的边长即可得出答案

解答 解:①当OB,OC在OA同侧时,
过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,
则$\overrightarrow{OC}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$.

∵∠AOB=60°,∠AOC=30°,
∴∠OCE=∠COF=∠COE=30°,$|\overrightarrow{OC}|=4\sqrt{3}$,
∴|$\overrightarrow{CE}$|=|$\overrightarrow{OE}$|=4,
∵$|\overrightarrow{OA}|=2$,$|\overrightarrow{OB}|=2$,
∴λ=μ=2,
∴λ+μ=4.
②当OB,OC在OA同侧时,
过点C作CE∥OB交OA的延长线于点E,过点C作CF∥OA交OB的延长线于点F,
则$\overrightarrow{OC}$=$\overrightarrow{OE}$+$\overrightarrow{OF}$.

∵∠AOB=60°,∠AOC=30°,
∴∠OCE=∠COF=90°,∠COE=30°,$|\overrightarrow{OC}|=4\sqrt{3}$,
∴|$\overrightarrow{CE}$|=4,|$\overrightarrow{OE}$|=8,
∵$|\overrightarrow{OA}|=2$,$|\overrightarrow{OB}|=2$,
∴λ=4,μ=-2,
∴λ+μ=2.
故答案为:4或2

点评 本题考查了向量在几何中的应用,平面向量的基本定理,向量运算的几何意义,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=sin(ωx+φ)-b(ω>0,0<φ<π)的图象两相邻对称轴之间的距离是$\frac{π}{2}$,若将f(x)的图象先向右平移$\frac{π}{6}$个单位,再向上平移$\sqrt{3}$个单位,所得函数g(x)为奇函数.
(1)求f(x)的解析式;
(2)求f(x)的对称轴及单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.我市正在建设最具幸福感城市,原计划沿渭河修建7个河滩主题公园.为提升城市品位、升级公园功能,打算减少2个河滩主题公园,两端河滩主题公园不在调整计划之列,相邻的两个河滩主题公园不能同时被调整,则调整方案的种数为(  )
A.12B.8C.6D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a>b>0,a+b=1,x=-($\frac{1}{a}$)b,y=log(ab)($\frac{1}{a}$+$\frac{1}{b}$),z=logb$\frac{1}{a}$,则(  )
A.y<x<zB.x<z<yC.z<y<xD.x<y<z

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知Sn为等比数列{an}的前n项和,且Sn=3n+r.
(1)求r的值,并求数列的通项公式an
(2)若bn=$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$,求数列{bn}前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知f(x)=x3+ax2+bx,在x=1处有极值-2,则a+2b=-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数$f(x)=sin({x+\frac{π}{2}})cos({x-\frac{π}{3}})$.
(1)求函数f(x)的最小正周期;
(2)将函数y=f(x)的图象向下平移$\frac{1}{4}$个单位,再将图象上各点的纵坐标伸长为原来的4倍(横坐标不变),得到函数y=g(x)的图象,求函数y=g(x)在$[{0,\frac{π}{3}}]$上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.数列{an}的前n项和为Sn.若数列{an}的各项按如下规则排列:$\frac{1}{2}$,$\frac{1}{3}$,$\frac{2}{3}$,$\frac{1}{4}$,$\frac{2}{4}$,$\frac{3}{4}$,$\frac{1}{5}$,$\frac{2}{5}$,$\frac{3}{5}$,$\frac{4}{5}$…$\frac{1}{n}$,$\frac{2}{n}$,…$\frac{n-1}{n}$…若存在正整数k,使Sk-1<10,Sk>10,则ak=$\frac{6}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设f(x)=|x-1|+2|x+1|的最小值为m.
(Ⅰ)求m的值;
(Ⅱ)设a,b∈R,a2+b2=m,求$\frac{1}{{a}^{2}+1}+\frac{4}{{b}^{2}+1}$的最小值.

查看答案和解析>>

同步练习册答案