精英家教网 > 高中数学 > 题目详情
20.已知Sn为等比数列{an}的前n项和,且Sn=3n+r.
(1)求r的值,并求数列的通项公式an
(2)若bn=$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$,求数列{bn}前n项和Tn

分析 (1)由S 1=3+r,可求a1,同理a2,a3,利用等比中项,求解r,然后求解通项公式,
(2)求出bn的表达式,利用裂项相消法求解数列的和即可.

解答 解:(1)∵a1=S 1=3+r,a1+a2=S 2=9+r,可得:
a2=6,a1+a2+a3=S3=27+r,可得a3=18,
可得18(3+r)=36,解得r=-1;
公比q=3,a1=2,
∴an=2×3n-1
(2)bn=$\frac{{a}_{n}}{{S}_{n}{S}_{n+1}}$=$\frac{2×{3}^{n-1}}{({3}^{n}-1)({3}^{n+1}-1)}$=$\frac{1}{3}$($\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1}$);
数列{bn}前n项和Tn=$\frac{1}{3}[\frac{1}{2}-\frac{1}{{3}^{2}-1}+\frac{1}{{3}^{2}-1}-\frac{1}{{3}^{3}-1}+…+\frac{1}{{3}^{n}-1}-\frac{1}{{3}^{n+1}-1}]$
=$\frac{1}{3}$($\frac{1}{2}-$$\frac{1}{{3}^{n+1}-1}$).

点评 本题考查等比数列的性质,数列求和的方法,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知y=f(x)的导函数为y=f'(x),且在x=1处的切线方程为y=-x+3,则f(1)-f'(1)=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=ax-$\frac{b}{x}$+c(a,b,c∈R)的图象经过点(1,0),且在x=2处的切线方程是y=-x+3.
(Ⅰ)确定f(x)的解析式;
(Ⅱ)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\frac{x-1}{x}$,则g(x)=f(4x)-x的零点是(  )
A.2B.$\frac{1}{2}$C.4D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知命题p:抛物线方程是x=4y2,则它的准线方程为x=1,命题q:双曲线$\frac{x^2}{4}-\frac{y^2}{5}=-1$的一个焦点是(0,3),其中真命题是(  )
A.pB.¬qC.p∧qD.p∨q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知平面内有三个向量$\overrightarrow{OA},\overrightarrow{OB},\overrightarrow{OC}$,其中∠AOB=60°,∠AOC=30°,且$|\overrightarrow{OA}|=2$,$|\overrightarrow{OB}|=2$,$|\overrightarrow{OC}|=4\sqrt{3}$,若$\overrightarrow{OC}=λ\overrightarrow{OA}+μ\overrightarrow{OB}(λ,μ∈R)$,则λ+μ=4或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若$\overrightarrow{a}$=(2,3,m),$\overrightarrow{b}$=(2n,6,8)且$\overrightarrow{a}$,$\overrightarrow{b}$为共线向量,则m+n=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知幂函数f(x)=x${\;}^{({m}^{2}+m)^{-1}}$(m∈N*)的图象经过点$({2,\sqrt{2}})$.
(1)试求m的值并写出该幂函数的解析式;
(2)试求满足f(1+a)>f(3-$\sqrt{a}}$)的实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y≤4}\\{x-y≤2}\\{x-1≥0}\end{array}\right.$,则目标函数$z=\frac{y}{x+1}$的取值范围是(  )
A.$(-∞,-\frac{1}{2}]∪[{0,\frac{3}{2}}]$B.$[{\frac{1}{4},\frac{3}{2}}]$C.$[{-\frac{1}{2},\frac{1}{4}}]$D.$[{-\frac{1}{2},\frac{3}{2}}]$

查看答案和解析>>

同步练习册答案