精英家教网 > 高中数学 > 题目详情

【题目】已知ABC内角ABC的对边分别是abc,且.

(Ⅰ)求A

(Ⅱ)若,求ABC面积的最大值.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)利用正弦定理,三角函数恒等变换,可得 ,结合范围,可求的值.

(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面积公式即可求解;方法2:由正弦定理可得,并将其代入可得,然后再化简,根据正弦函数的图象和性质即可求得面积的最大值.

解:(I)因为

由正弦定理可得:

所以

所以

,所以

可得:

,所以

所以,可得:

II)方法1:由余弦定理得:

所以

当且仅当时取等号,

所以ABC面积的最大值为

方法2:因为

所以

所以

所以

当且仅当,即,当时取等号.

所以ABC面积的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为响应国家节能减排,开发清洁能源的号召,小华制作了一个太阳灶,如图所示.集光板由抛物面(抛物线绕对称轴旋转得到)形的反光镜构成,已知镜口圆的直径为,镜深,为达到最佳吸收太阳光的效果,容器灶圈应距离集光板顶点(

A.0.5B.1C.1.5D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区工会利用“健步行” 开展健步走积分奖励活动.会员每天走5 千步可获积分30分(不足5千步不积分), 每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了 1000名会员,统计了当天他们的步数,并将样本数据分为九组,整理得到如图频率分布直方图:

(1)求当天这1000名会员中步数少于11千步的人数;

(2)从当天步数在的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于200分的概率;

(3)写出该组数据的中位数(只写结果).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人2013-2017这五年的年度体检的血压值的折线图如图所示.

(1)根据散点图,直接判断甲、乙这五年年度体检的血压值谁的波动更大,并求波动更大者的方差;

(2)根据乙这五年年度体检血压值的数据,求年度体检血压值关于年份的线性回归方程,并据此估计乙在2018年年度体检的血压值.

(附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中侧面为等边三角形且垂直于底面的中点.

1)证明:直线平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求曲线在点处的切线方程;

2)求函数的单调区间;

3)若对任意的,都有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,游客从某旅游景区的景点A处下山至C处有两种路径:一种是从A处沿直线步行到C处;另一种是先从A处沿索道乘缆车到B处,然后从B处沿直线步行到C处,现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m·min-1.在甲出发2 min后,乙从A处乘缆车到B处,在B处停留1 min后,再从B处匀速步行到C处假设缆车的速度为130 m·min-1,山路AC长为1260 m,经测量.

1)乙出发多长时间后,乙在缆车上与甲的距离最短?

2)为使甲、乙在C处互相等待的时间不超过3 min,乙步行的速度应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】7名男生和5名女生中选出5人,分别求符合下列条件的选法数.

1必须被选出;

2)至少有2名女生被选出;

3)让选出的5人分别担任体育委员、文娱委员等5种不同职务,但体育委员由男生担任,文娱委员由女生担任.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】BMI指数(身体质量指数,英文为Body Mass Index,简称BMI)是衡量人体胖瘦程度的一个标准,BMI=体重(kg)/身高(m)的平方. 根据中国肥胖问题工作组标准,当BMI时为肥胖. 某地区随机调查了120035岁以上成人的身体健康状况,其中有200名高血压患者,得到被调查者的频率分布直方图如图:

1)求被调查者中肥胖人群的BMI 平均值

2)根据频率分布直方图,完成下面的列联表,并判断能有多大(百分数)的把握认为 35 岁以上成人高血压与肥胖有关?

肥胖

不肥胖

总计

高血压

非高血压

总计

参考公式:,其中.

参考数据:

0.25

0.10

0.050

0.010

0.001

1.323

2.706

3.841

6.635

10.828

查看答案和解析>>

同步练习册答案