精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=2sin2x+cos(2x﹣ ).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0, )上的单调递增区间.

【答案】解:(Ⅰ)函数f(x)=2sin2x+cos(2x﹣ ). 化简可得:f(x)=1﹣cos2x+ cos2x+ sin2x=1+sin(2x﹣
∴函数的最小正周期T=
(Ⅱ)由 ,k∈Z,
≤x≤
∴f(x)在(0, )上的单调递增区间为(0, ].
【解析】(Ⅰ)利用降次公式和两角和与差的公式化简,化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期,(Ⅱ)最后将内层函数看作整体,放到正弦函数的增区间上,解不等式得函数的单调递增区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x-1)2+(y-2)2=2,过点P(2,-1)作圆C的切线,切点为AB.

(1)求直线PAPB的方程;

(2)求过P点的圆C的切线长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某程序框图如图所示,则该程序运行后输出的结果为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45/m,新墙的造价为180/m,设利用的旧墙的长度为x(单位:元)。

)将y表示为x的函数;

)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的中心在原点焦点F1F2在坐标轴上渐近线方程为y=±x且双曲线过点P(4,-).

(1)求双曲线的方程

(2)若点M(x1y1)在双曲线上的范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售,已知一只花篮需要用铜丝200米,铁丝300米;编制一只花盆需要100米,铁丝300米,设该厂用所有原来编制个花篮 个花盆.

(Ⅰ)列出满足的关系式,并画出相应的平面区域;

(Ⅱ)若出售一个花篮可获利300元,出售一个花盘可获利200元,那么怎样安排花篮与花盆的编制个数,可使得所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是双曲线的左右焦点,过的直线与双曲线的左右两支分别交于两点.若为等边三角形,则的面积为(

A. 8 B. C. D. 16

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若ln(x+1)﹣1≤ax+b对任意x>﹣1的恒成立,则 的最小值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2-x+c定义在区间[0,1]上,x1,x2

[0,1],且x1≠x2,求证:

(1)f(0)=f(1);

(2)|f(x2)-f(x1)|<|x1-x2|.

查看答案和解析>>

同步练习册答案