精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的中心在原点焦点F1F2在坐标轴上渐近线方程为y=±x且双曲线过点P(4,-).

(1)求双曲线的方程

(2)若点M(x1y1)在双曲线上的范围

【答案】(1)x2y2=6.(2)≥-6

【解析】

(1) 设双曲线的方程为x2y2λ,代入点坐标得到方程即可;(2)根据第一问得到c=(-x1,-y1),=(x1,-y1),再由点在曲线上得到进而得到范围。

(1)设双曲线的方程为x2y2λ(λ≠0).

∵双曲线过点(4,-),16-10=λ,即λ=6.

∴双曲线的方程为x2y2=6.

(2)(1)可知,abc

F1(-,0),F2(,0),

=(-x1,-y1),=(x1,-y1),

∵点M(x1y1)在双曲线上,∴

≥0,≥-6.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos2,g(x)=1+sin 2x.

(1)设x=x0是函数y=f(x)图象的一条对称轴,求g(x0)的值.

(2)若函数h(x)=f(x)+g(x)在区间上的最大值为2,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=(2x2﹣3x)ex
(1)求函数f(x)的单调递减区间;
(2)若方程(2x﹣3)ex= 有且仅有一个实根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本题满分13分)

某食品厂进行蘑菇的深加工,每公斤蘑菇的成本20元,并且每公斤蘑菇的加工费为元(为常数,且,设该食品厂每公斤蘑菇的出厂价为元(),根据市场调查,销售量成反比,当每公斤蘑菇的出厂价为30元时,日销售量为100公斤.

)求该工厂的每日利润元与每公斤蘑菇的出厂价元的函数关系式;

)若,当每公斤蘑菇的出厂价为多少元时,该工厂的利润最大,并求最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2ex﹣ax﹣2(x∈R,a∈R).
(1)当a=1时,求曲线y=f(x)在x=1处的切线方程;
(2)当x≥0时,若不等式f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sin2x+cos(2x﹣ ).
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在(0, )上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)证明:an>1;
(Ⅱ)证明: + +…+ (n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设斜率为k(k>0)的直线l与椭圆C: + =1交于A、B两点,且OA⊥OB.

(Ⅰ)求直线l在y轴上的截距(用k表示);
(Ⅱ)求△AOB面积取最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点分别为 交于O,A两点(O为坐标原点),且

求抛物线的方程;

过点O的直线交的下半部分于点M,交的左半部分于点N,点,求面积的最小值.

查看答案和解析>>

同步练习册答案