【题目】如图,设斜率为k(k>0)的直线l与椭圆C: + =1交于A、B两点,且OA⊥OB.
(Ⅰ)求直线l在y轴上的截距(用k表示);
(Ⅱ)求△AOB面积取最大值时直线l的方程.
【答案】解:(Ⅰ)设l:y=kx+t,A(x1 , y1),B(x2 , y2), ∵斜率为k(k>0)的直线l与椭圆C: + =1交于A、B两点,且OA⊥OB,
∴∠AOB=90°,∴ ,
∴x1x2+(kx1+t)(kx2+t)=0,∴(1+k2)x1x2+kt(x1+x2)+t2=0,(*)
联立 ,消去y,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,
则 ,x1x2= 三,且△>0,代入(*)
从而得(1+k2)(3t2﹣9)﹣6k2t2+t2(1+3k2)=0,∴3t2﹣9﹣9k2+t2=0,
∴ ,∴t=± ,
∴直线l在y轴上的截距为 或﹣ .
(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S= |AB|d,
而由(1)知d= ,且|AB|=
= = = ,
∴ ≤ ,
当 时, ,解得k= ,∴t= ,
∴所求直线方程为y= 或y= .
【解析】(Ⅰ)设l:y=kx+t,A(x1 , y1),B(x2 , y2),由OA⊥OB,得(1+k2)x1x2+kt(x1+x2)+t2=0,联立 ,得x2+3(kx+t)2=9,即(1+3k2)x2+6ktx+3t2﹣9=0,由此利用韦达定理、根的判别式,结合已知条件能求出直线l在y轴上的截距.(Ⅱ)设△AOB的面积为S,O到直线l的距离为d,则S= |AB|d,由此利用点到直线的距离公式和弦长公式能求出△AOB面积取最大值时直线l的方程.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:.
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为(t为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换得到曲线C′,设曲线C′上任一点为M(x,y),求x+2y的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的中心在原点,焦点F1,F2在坐标轴上,渐近线方程为y=±x,且双曲线过点P(4,-).
(1)求双曲线的方程;
(2)若点M(x1,y1)在双曲线上,求的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2009年广东卷文)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是 。若用分层抽样方法,则40岁以下年龄段应抽取 人.
图 2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l与抛物线交于点A,B两点,与x轴交于点M,直线OA,OB的斜率之积为.
(1)证明:直线AB过定点;
(2)以AB为直径的圆P交x轴于E,F两点,O为坐标原点,求|OE||OF|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆内接四边形ABCD中,AB=3,AD=2,∠BCD=1200.
(1)求线段BD的长与圆的面积.
(2)求四边形ABCD的周长的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com