精英家教网 > 高中数学 > 题目详情

【题目】如图所示,异面直线互相垂直,,截面分别与相交于点,且平面平面.

(1)求证:平面

(2)求锐二面角的正切值.

【答案】(1)见解析(2)

【解析】分析:(1)推导出AB∥EF,CD∥HE,AB⊥BC,BC⊥DC,BC⊥EF,BC⊥EH,由此能证明BC平面EFGH.

(2)作,以C为原点,CD为x轴,CB为y轴,Cz为z轴,建立空间直角坐标系C﹣xyz,利用向量法能求出二面角B﹣AD﹣C的正切值.

详解:(1)∵平面

又∵平面,平面平面.

,同理

,∴.

同理.

,同理.

又∵是平面内的两相交直线.

平面.

(2)由(1)及异面直线互相垂直知,直线两两垂直.

,以为原点,轴,轴,轴,建立空间直角坐标系,如图所示,

平面,∴平面的一个法向量可设为

,∴.

,即

又∵平面,∴平面的一个法向量可设为.

,得,即

设锐二面角的大小为

那么

∴二面角的正切值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】给出定义:若(其中为整数),则叫做离实数最近的整数,记作,即.设函数,二次函数,若函数的图象有且只有一个公共点,则的取值不可能是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线是正常数)上有两点,焦点

甲:

乙:

丙:

丁:.

以上是“直线经过焦点”的充要条件有几个(  )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱柱中,平面为棱上一动点,过直线的平面分别与棱交于点,则下列结论正确的是__________

①对于任意的点,都有

②对于任意的点,四边形不可能为平行四边形

③存在点,使得为等腰直角三角形

④存在点,使得直线平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校高二年级举办了一次数学史知识竞赛活动,共有名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分均为整数,满分为分)进行统计,统计结果见下表.请你根据频率分布表解答下列问题:

1)填出频率分布表中的空格;

2)为鼓励更多的学生了解数学史知识,成绩不低于分的同学能获奖,请估计在参加的名学生中大概有多少名学生获奖?

3)在上述统计数据的分析中有一项计算见算法流程图,求输出的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市根据地理位置划分成了南北两区,为调查该市的一种经济作物(下简称 作物)的生长状况,用简单随机抽样方法从该市调查了 500 处 作物种植点,其生长状况如表:

其中生长指数的含义是:2 代表“生长良好”,1 代表“生长基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,绝收”.

(1)估计该市空气质量差的作物种植点中,不绝收的种植点所占的比例;

(2)能否有 99%的把握认为“该市作物的种植点是否绝收与所在地域有关”?

(3)根据(2)的结论,能否提供更好的调查方法来估计该市作物的种植点中,绝收种植点的比例?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校有高三文科学生1000人,统计其高三上期期中考试的数学成绩,得到频率分布直方图如下:

(1)求出图中的值,并估计本次考试低于120分的人数;

(2)假设同组的每个数据可用该组区间的中点值代替,试估计本次考试不低于120分的同学的平均数(其结果保留一位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校高三年级中随机抽取100名学生,对其高校招生体检表中的视图情况进行统计,得到如图所示的频率分布直方图,已知从这100人中随机抽取1人,其视力在的概率为.

(1)求的值;

(2)若某大学专业的报考要求之一是视力在0.9以上,则对这100人中能报考专业的学生采用按视力分层抽样的方法抽取8人,调查他们对专业的了解程度,现从这8人中随机抽取3人进行是否有意向报考该大学专业的调查,记抽到的学生中视力在的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知幂函数是单调减函数,且为偶函数.

(1)求的解析式;

(2)讨论的奇偶性,并说明理由.

查看答案和解析>>

同步练习册答案