【题目】已知幂函数()在是单调减函数,且为偶函数.
(1)求的解析式;
(2)讨论的奇偶性,并说明理由.
【答案】(1);(2)答案见解析。
【解析】
(1)根据幂函数的性质,幂函数在(0,+∞)是单调减函数,且为偶函数,得幂指数小于0,再由m∈z可求m的值;
(2)由(I)知F(x)=a+(a﹣2)x,分a=0,a=2,a≠0且a≠2三种情况利用定义分别判断函数的奇偶性.
(1)由于幂函数f(x)=x在(0,+∞)上单调递减,所以m2-2m-3<0,求得-1<m<3,
因为m∈Z,所以m=0,1,2.
因为f(x)是偶函数,
所以m=1,
故f(x)=.
(2)F(x)=af(x)+(a-2)x5·f(x)
=a·+(a-2)x.
当a=0时,F(x)=-2x,对于任意的x∈(-∞,0)∪(0,+∞)都有F(x)=-F(-x),
所以F(x)=-2x是奇函数;
当a=2时,,对于任意的x∈(-∞,0)∪(0,+∞)都有F(x)=F(-x),
所以是偶函数;
当a≠0且a≠2时,F(1)=2a-2,F(-1)=2,
因为F(1)≠F(-1),F(1)≠-F(-1),
所以是非奇非偶函数.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=lg(ax-bx)(a>1>b>0).
(Ⅰ)求f(x)的定义域;
(Ⅱ)当x∈(1,+∞)时,f(x)的值域为(0,+∞),且f(2)=lg2,求实数a、b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数,且x=-1处取得极大 值2.
(1)求f(x)的解析式;
(2)过点A(1,t) 可作函数f(x)图像的三条切线,求实数t的取值范围;
(3)若对于任意的恒成立,求实数m取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ ,g(x)=2ln(x+1)+e﹣x .
(1)x∈(﹣1,+∞)时,证明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com