精英家教网 > 高中数学 > 题目详情

【题目】已知幂函数是单调减函数,且为偶函数.

(1)求的解析式;

(2)讨论的奇偶性,并说明理由.

【答案】(1);(2)答案见解析。

【解析】

(1)根据幂函数的性质,幂函数在(0,+∞)是单调减函数,且为偶函数,得幂指数小于0,再由mz可求m的值;

(2)由(I)知F(x)=a+(a﹣2)x,分a=0,a=2,a0且a2三种情况利用定义分别判断函数的奇偶性.

(1)由于幂函数f(x)=x在(0,+∞)上单调递减,所以m2-2m-3<0,求得-1<m<3,

因为m∈Z,所以m=0,1,2.

因为f(x)是偶函数,

所以m=1,

f(x)=.

(2)F(x)=af(x)+(a-2)x5·f(x)

a·+(a-2)x.

a=0时,F(x)=-2x,对于任意的x∈(-∞,0)∪(0,+∞)都有F(x)=-F(-x),

所以F(x)=-2x是奇函数;

a=2时,,对于任意的x∈(-∞,0)∪(0,+∞)都有F(x)=F(-x),

所以是偶函数;

a≠0且a≠2时,F(1)=2a-2,F(-1)=2,

因为F(1)≠F(-1),F(1)≠-F(-1),

所以是非奇非偶函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=lg(ax-bx)(a>1>b>0).

(Ⅰ)求fx)的定义域;

(Ⅱ)当x∈(1,+∞)时,fx)的值域为(0,+∞),且f(2)=lg2,求实数ab的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为奇函数,且x=-1处取得极大 2

1)求f(x)的解析式;

2)过点A(1,t) 可作函数f(x)图像的三条切线,求实数t的取值范围;

3)若对于任意的恒成立,求实数m取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex ,g(x)=2ln(x+1)+ex
(1)x∈(﹣1,+∞)时,证明:f(x)>0;
(2)a>0,若g(x)≤ax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 ,命题 .

1)若,求实数的值;

2)若的充分条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)当=-1时,求的单调区间及值域;

(2)若在()上为增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,和直线相切,且圆心在直线上.

(1)求圆的方程;

(2)已知直线经过原点,并且被圆截得的弦长为2,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的单调减区间是

(1)求的解析式;

(2)若对任意的,关于的不等式

时有解,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,且.

是棱的中点,平面与棱交于点.

1)求证:

2)若,且平面平面,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

同步练习册答案