精英家教网 > 高中数学 > 题目详情

【题目】已知等差数列的前项和为,并且,数列满足:,记数列的前项和为.

(1)求数列的通项公式及前项和为

(2)求数列的通项公式及前项和为

(3)记集合,若的子集个数为16,求实数的取值范围.

【答案】(1);(2);(3)

【解析】

试题分析:(1)数列是等差数列,可把已知用表示出来,列出方程组,解出,从而得到通项公式和胶项和;(2)由已知得,这是数列前后项的比值,因此可用连乘法求得通项,即,从而有,它可看作是一个等差数列和一个等比数列的乘积,因此其前项和用乘公比错位相减法求得;(3)由(1)(2)求得,不等式恒成立,即恒成立,只要求得的最小值即可,先求出前面几项,观察归纳猜想出单调性并给出证明(可用证明数列的单调性),从而可求得最小值,得范围.

试题解析:(1)设数列的公差为,由题意得

(2)由题意得

叠乘得

由题意得

-得:

(3)由上面可得

下面研究数列的单调性,

时,单调递减.

所以不等式解的个数为4,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知矩形所在平面垂直于直角梯所在平面,平面平面,且,且.

(1)设点为棱中点,在内是否存在点,使得平面?若存在,请证明,若不存在,说明理由

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】x2-3x+2<0”“-1<x<2”成立的______条件(在充分不必要,“必要不充分”,“充要”,“既不充分又不必要”中选一个填写).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足,对于任意,且..

(1)求函数解析式

(2)探求函数在区间上的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某校学生喜欢吃辣是否与性别有关,随机对此校100人进行调查,得到如下的列表:已知在全部100人中随机抽取1人抽到喜欢吃辣的学生的概率为

喜欢吃辣

不喜欢吃辣

合计

男生

10

女生

20

合计

100

(1)请将上面的列表补充完整;

(2)是否有99.9%以上的把握认为喜欢吃辣与性别有关?说明理由:

下面的临界值表供参考:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点在椭圆上.

(1)求椭圆的方程;

(2)点在圆上,且在第一象限,过的切线交椭圆于两点,问:的周长是否为定值?若是,求出定值;若不是。说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合满足,则称为集合的一种分拆,并规定:当且仅当时, 是集合的同一种分拆。若集合有三个元素,则集合的不同分拆种数是 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=xln x

1求函数fx的极值点;

2设函数gx=fx-ax-1,其中a∈R,求函数gx在区间[1,e]上的最小值.(其中e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正四棱锥底面边长为侧棱与底面所成角的正切值为

1求正四棱锥的外接球半径

2若E是PB中点,求异面直线PD与AE所成角的正切值

查看答案和解析>>

同步练习册答案