精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(I)讨论函数的零点个数;

(Ⅱ)若曲线在点处的切线经过点,当时,恒成立,求实数的取值范围.

【答案】(Ⅰ) 当时,有一个零点;当时,有两个零点.( Ⅱ) .

【解析】

(I)求导,对a分类讨论,根据导函数的正负研究 的单调性及最值,结合的极限,即可求解函数零点的个数;(Ⅱ)由题意可得p0,化简原不等式,设,其中x[1+∞),求得导数,讨论p的范围,判断单调性,即可得到所求范围.

(I)函数的定义域为

求导,得

时,,所以上单调递增,

,所以有一个零点;

时,

所以上单调递减,在上单调递增.

,则

.

所以上单调递增,在上单调递减.

时,,所以有一个零点;

时,,且当时,

时,,所以有两个零点.

综上所述:当时,有一个零点;

时,有两个零点.

(Ⅱ)曲线在点处的切线为,即

由题意得,解得

所以

由题意知,当时,,所以

从而当时,

由题意知,即,其中

,其中

,即,其中

,其中

①当时,因为 ,所以是增函数,

从而当时,

所以是增函数,从而.

故当时符合题意;

②当时,因为时,,所以在区间上是减函数,

从而当时,

所以上是减函数,从而

故当时不符合题意.

③当时,因为时,,所以是减函数,

从而当时,

所以是减函数,从而

故当时不符合题意,

综上,p的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在长方体中满足,若点在棱上点在棱上,且.

(1)求证:;

(2)当的中点时,求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);

2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数近似为样本方差.

①求

②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.

附:参考数据

若随机变量服从正态分布,则,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,(单位:克)中,其频率分布直方图如图所示,

(Ⅰ)已经按分层抽样的方法从质量落在的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:

(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:

方案一:所有蜜柚均以元/千克收购;

方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形的对角线交于点,点分别在上,于点.将沿折到的位置,.

(I)证明:平面平面

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中有如下问题:今有蒲生一日,长三尺,莞生一日,长1尺.蒲生日自半,莞生日自倍.问几何日而长等?意思是:今有蒲第一天长高3尺,莞第一天长高1尺,以后蒲每天长高前一天的一半,莞每天长高前一天的2倍.若蒲、莞长度相等,则所需时间为(  )

(结果精确到0.1.参考数据:lg2=0.3010lg3=0.4771.)

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为A,右焦点为F,且|AF|=3.

(Ⅰ)求椭圆的方程;

(Ⅱ)过点F做互相垂直的两条直线l1,l2分别交直线l:x=4于M,N两点,直线AM,AN分别交椭圆于P,Q两点,求证:P,F,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上单调递增,求实数的取值范围;

2)设函数,证明:是函数有两个零点的充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,讨论函数的单调性;

(2)若不等式对于任意成立,求正实数的取值范围.

查看答案和解析>>

同步练习册答案