精英家教网 > 高中数学 > 题目详情

【题目】为建立健全国家学生体质健康监测评价机制,激励学生积极参加身体锻炼,教育部印发《国家学生体质健康标准(2014年修订)》,要求各学校每学年开展覆盖本校各年级学生的《标准》测试工作.为做好全省的迎检工作,某市在高三年级开展了一次体质健康模拟测试(健康指数满分100分),并从中随机抽取了200名学生的数据,根据他们的健康指数绘制了如图所示的频率分布直方图.

1)估计这200名学生健康指数的平均数和样本方差(同一组数据用该组区间的中点值作代表);

2)由频率分布直方图知,该市学生的健康指数近似服从正态分布,其中近似为样本平均数近似为样本方差.

①求

②已知该市高三学生约有10000名,记体质健康指数在区间的人数为,试求.

附:参考数据

若随机变量服从正态分布,则,.

【答案】(1)75,135;(2).

【解析】

1)以组中值代替小组平均值,根据加权平均数公式计算平均数,根据方差公式计算

2)①利用正态分布的性质求得

②根据二项分布的期望公式得出

1)由频率分布直方图可知,各区间对应的频数分布表如下:

分值区间

频数

5

15

40

75

45

20

.

2)①由(1)知服从正态分布,且

.

②依题意,服从二项分布,即,则.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求上的最值;

(2)若,当有两个极值点时,总有,求此时实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若函数存在极小值点,求的取值范围;

(2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了提高利润,从2014年至2018年每年对生产环节的改进进行投资,投资金额与年利润增长的数据如下表:

年份

2014

2015

2016

2017

2018

投资金额x(万元)

5

5.5

6

6.5

7

年利润增长y(万元)

7.5

8

9

10

11.5

1)请用最小二乘法求出y关于x的回归直线方程;

2)如果2020年该公司计划对生产环节的改进的投资金额为8万元,估计该公司在该年的年利润增长为多少?

参考公式: 参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C的参数方程为α为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系.直线1的极坐标方程为

(Ⅰ)求C的普通方程和l的直角坐标方程;

(Ⅱ)设直线lx轴和y轴的交点分别为AB,点M在曲线C上,求MAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的图象如图所示,令,则下列关于函数的说法中正确的是(

A. 函数图象的对称轴方程为

B. 函数的最大值为2

C. 函数的图象上存在点,使得在点处的切线与直线平行

D. 若函数的两个不同零点分别为,则最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,,侧面底面.

(1)求证:平面平面

(2)若,且二面角等于,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的零点个数;

(Ⅱ)若曲线在点处的切线经过点,当时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形所在平面与半圆弧所在平面垂直,上异于的点

(1)证明:平面平面

(2)在线段上是否存在点,使得平面?说明理由

查看答案和解析>>

同步练习册答案