精英家教网 > 高中数学 > 题目详情
已知椭圆E:
x2
a2
+
y2
b2
=1 (a>b>0)
的左焦点F1的坐标为(-1,0),已知椭圆E上的一点到F1、F2两点的距离之和为4.
(Ⅰ)求椭圆E的方程;
(Ⅱ)过椭圆E的右焦点F2作一条倾斜角为
π
4
的直线交椭圆于C、D,求△CDF1的面积;
(Ⅲ)设点P(4,t)(t≠0),A、B分别是椭圆的左、右顶点,若直线AP、BP分别与椭圆相交异于A、B的点M、N,求证∠MBP为锐角.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线的定义、性质与方程
分析:(Ⅰ)根据左焦点F1的坐标为(-1,0),椭圆E上的一点到F1、F2两点的距离之和为4,求出求椭圆E的方程;
(Ⅱ)直线CD方程为y=x-1,将直线方程代入椭圆方程,求出|CD|,点F1到直线CD的距离,可求△CDF1的面积;
(Ⅲ)根据P、A、M三点共线,可得kPA=kMA
t
6
=
y0
x0+2
⇒t=
6y0
x0+2
,再利用向量的数量积公式,即可得出结论.
解答: 解:(Ⅰ)由题设知:2a=4,即a=2,∴c2=1,b2=3
故椭圆方程为
x2
4
+
y2
3
=1
,…(3分)
(Ⅱ)由已知得直线CD方程为y=x-1,将直线方程带入椭圆方程得:7x2-8x-8=0…(4分)
设点C(x1y1),D(x2y2),x1+x2=
8
7
x1x2=-
8
7
…(5分)
|CD|=
1+12
(x1+x2)2-4x1x2
=
2
(
8
7
)
2
+4•
8
7
…(7分)
点F1到直线CD的距离是d=
|-1-1|
2
=
2
…(8分)
所以S△CDF1=
1
2
|CD|d=
12
7
2
…(9分)
(Ⅲ)A(-2,0),B(2,0).
设M(x0,y0),则-2<x0<2
因为点M在椭圆上,所以
y
2
0
=
3
4
(4-
x
2
0
)
…(10分)
因为P、A、M三点共线,所以kPA=kMA
t
6
=
y0
x0+2
⇒t=
6y0
x0+2
…(11分)
所以
BM
=(x0-2,y0),
BP
=(2,
6y0
x0+2
)

所以
BM
BP
=
5
2
(2-x0)>0…(13分)
所以∠MBP为锐角…(14分)
点评:本题考查椭圆的方程,考查直线与椭圆的位置关系,考查三角形面积的计算,考查向量知识的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,函数g(x)=f(x)-
1
2
[f(1)+f(3)],若a>0且f(x-1)=f(-x-1),g(x)在区间[-2,2]上最大值为-1,求g(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=asinx+bcosx+c(a,b,c为常数)的图象过原点,且对任意x∈R总有f(x)≤f(
π
3
)
成立;
(1)若f(x)的最大值等于1,求f(x)的解析式;
(2)试比较f(
b
a
)
f(
c
a
)
的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,求|x1-x2|和
x1+x2
2
+x13x23的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-
a
2
x2e|x|

(Ⅰ)若f(x)是[0,+∞)上是增函数,求实数a的取值范围;
(Ⅱ)证明:当a≥1时,证明不等式f(x)≤x+1对x∈R恒成立;
(Ⅲ)对于在(0,1)中的任一个常数a,试探究是否存在x0>0,使得f(x0)>x0+1成立?如果存在,请求出符合条件的一个x0;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了解社区群众体育活动的开展情况,拟采用分层抽样的方法从A,B,C三个行政区中抽出6个社区进行调查.已知A,B,C行政区中分别有12,18,6个社区.
(Ⅰ)求从A,B,C三个行政区中分别抽取的社区个数;
(Ⅱ)若从抽得的6个社区中随机的抽取2个进行调查结果的对比,求抽取的2个社区中至少有一个来自A行政区的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
1
2
1
2
sinx+
3
2
cosx)与
b
(1,y)共线,设函数y=f(x).
(1)求函数f(x)的周期及最大值;
(2)已知△ABC中的三个内角A、B、C所对的边分别为a,b,c,若锐角A满足f(A-
π
3
)=
3
,且a=7,sinB+sinC=
13
3
14
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知中心在原点O,左右焦点分别为F1,F2的椭圆的离心率为
6
3
,焦距为2
2
,A,B是椭圆上两点.
(1)若直线AB与以原点为圆心的圆相切,且OA⊥OB,求此圆的方程;
(2)动点P满足:
OP
=
OA
+3
OB
,直线OA与OB的斜率的乘积为-
1
3
,求动点P的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

对于不等式组
2x-3y+2≥0
3x-y-4≤0
x+2y+1≥0
的解(x,y),当且仅当
x=2
y=2
时,z=ax+y取得最大值,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案