精英家教网 > 高中数学 > 题目详情
幂函数y=(m2-m-1)xm2-2m-1,当x∈(0,+∞)时为减函数,则实数m的值是
 
考点:幂函数的概念、解析式、定义域、值域
专题:函数的性质及应用
分析:根据幂函数的系数一定为1可先确定参数m的值,再根据单调性进行检验,可得答案.
解答: 解:∵函数y=(m2-m-1)xm2-2m-1是幂函数
∴可得m2-m-1=1,解得m=-1或2,
当m=-1时,函数为y=x2在区间(0,+∞)上单调递增,不满足题意
当m=2时,函数为y=x-1在(0,+∞)上单调递减满足条件
故答案为:2.
点评:本题主要考查幂函数的表达形式以及幂函数的单调性.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,内角A、B、C所对的边分别为a、b、c,若A<B<90°<C,且2b=a+c,则
c
a
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
1
2
|x|-
1-x2
-1
的零点个数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}的前n项和Sn=2n-a,n∈N*.设公差不为零的等差数列{bn}满足:b1=a1+2,且b2+5,b4+5,b8+5成等比.
(Ⅰ) 求a及bn
(Ⅱ) 设数列{an}的前n项和为Tn.求使Tn>bn的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a=(
3
5
)-
1
3
,b=(
3
5
)-
1
2
,c=(
4
3
)-
1
2
,则a,b,c三个数的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,A={y|y=tanx,x∈B},B={x||x|≤
π
4
},则图中阴影部分表示的集合是(  )
A、[-1,1]
B、[-
π
4
π
4
]
C、[-1,-
π
4
)∪(
π
4
,1]
D、[-1,-
π
4
]∪[
π
4
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)在定义域上是奇函数,且在[a,b](0<a<b)上是减函数,图象如图所示.
(1)化简:f(
2a+b
3
)+f(
a+2b
3
)+f(
-2a-b
3
)+f(
-a-2b
3
);
(2)画出函数f(x)在[-b,-a]上的图象;
(3)证明:f(x)在[-b,-a]上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,圆ρ=-2sinθ(ρ≥0,0≤θ≤2π)的圆心的极坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+3x,数列{an}的前n项和为Sn,且对一切正整数n,点Pn(n,Sn)都在函数f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差数列{bn}的任一项bn∈A∩B,其中b1是A∩B中最的小数,且88<b8<93,求{bn}的通项公式;
(3)设数列{cn}满足cn+2-cn=a1,且c1=c,c2=a2-c,若数列{cn}为单调递增数列,求实数c的取值范围.

查看答案和解析>>

同步练习册答案