精英家教网 > 高中数学 > 题目详情
关于直线与平面,有以下四个命题:
① 若,则
② 若,则
③若,则
④ 若,则
其中正确命题的序号是        .(把你认为正确命题的序号都填上)
②③
①错,m、n可能相交,也可能导面.②正确.是利用向量法求二面角的依据.
③正确.因为,所以.
④错.M与n可能异面.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本小题满分12分)

已知三棱锥P­ABC中,PA⊥平面ABC,AB⊥AC,PA=AC=AB,
N为AB上一点,AB=4AN,M,S分别为PB,BC的中点.
(I)证明:CM⊥SN;(II)求SN与平面CMN所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,
,点在棱上移动 

(Ⅰ)证明:
(Ⅱ)当的中点时,求点到面的距离;

 

 
(Ⅲ)等于何值时,二面角的大小为

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知平面∥平面外一点,过点的直线分别交于,过点的直线分别交于,则的长为         

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,,是空间三条不同的直线,则下列命题正确的是(  )
A.,
B.,
C.,,共面
D.,,共点,,共面

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题8分)已知三棱锥A—BCD及其三视图如图所示.

(1)求三棱锥A—BCD的体积与点D到平面ABC的距离;
(2)求二面角 B-AC-D的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

线段AB,CD在两条异面直线上,M,N分别是AB,CD的中点,则一定有(   )
A.B.
C.D.

查看答案和解析>>

同步练习册答案