精英家教网 > 高中数学 > 题目详情
2.设双曲线$\frac{y^2}{a^2}-\frac{x^2}{6}$=1的两个焦点分别为F1,F2,离心率为$\sqrt{3}$.
(1)求此双曲线的渐近线l1、l2的方程;
(2)若A、B分别为l1、l2上的点,且2|AB|=5|F1F2|,求线段AB的中点M的轨迹方程,并说明轨迹是什么曲线.

分析 (1)利用离心率为$\sqrt{3}$,结合c2=a2+6,可求a,c的值,从而可求双曲线方程,即可求得渐近线方程;
(2)设A(x1,y1),B(x2,y2),AB的中点M(x,y),利用2|AB|=5|F1F2|,建立方程,根据A、B分别为l1、l2上的点,化简可得轨迹方程及对应的曲线.

解答 解:(1)∵e=$\sqrt{3}$,∴c2=3a2,∵c2=a2+6,∴a=$\sqrt{3}$,c=3.
∴双曲线方程为$\frac{{y}^{2}}{3}-\frac{{x}^{2}}{6}$=1,渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.
(2)设A(x1,y1),B(x2,y2),AB的中点M(x,y),
∵2|AB|=5|F1F2|,∴|AB|=$\frac{5}{2}$|F1F2|=$\frac{5}{2}$×2c=15,∴(x1-x22+(y1-y22=225,
∵y1=$\frac{\sqrt{2}}{2}$x1,y2=-$\frac{\sqrt{2}}{2}$x2,2x=x1+x2,2y=y1+y2
∴y1+y2=$\frac{\sqrt{2}}{2}$(x1-x2),y1-y2=$\frac{\sqrt{2}}{2}$(x1+x2),
∴2×(2y)2+$\frac{1}{2}$×(2x)2=225,
∴$\frac{{y}^{2}}{\frac{225}{8}}+\frac{{x}^{2}}{\frac{225}{2}}$=1,对应的曲线为椭圆.

点评 本题考查轨迹方程的求解,考查双曲线的几何性质,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知数列{an}的通项公式an=(n+2)•($\frac{6}{7}}$)n,则数列{an}的项取最大值时,n=4或5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知z(2-i)=1+i,则$\overline{z}$=$\frac{1}{5}-\frac{3}{5}i$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题P:4x-a•2x+1≥0对?x∈[-1,1]恒成立,命题Q:f(x)=log2(ax2-2x+$\frac{1}{3}$)的值域是R,若满足P且Q为假,P或Q为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.a=log23.5,$b={log_{\frac{1}{2}}}\frac{1}{3}$,$c=(\frac{1}{2}{)^{0.3}}$,则(  )
A.c<b<aB.a<c<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数a,b,c∈(0,1),设$\frac{2}{a}$+$\frac{1}{1-b}$,$\frac{2}{b}$+$\frac{1}{1-c}$,$\frac{2}{c}$+$\frac{1}{1-a}$这三个数的最大值为M,则M的最小值为(  )
A.5B.3+2$\sqrt{2}$C.3-2$\sqrt{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若定义在R上的函数f(x)满足f(x)+f'(x)<1,f(0)=4,则不等式ex[f(x)-1]>3(e为自然对数的底数)的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知不等式组$\left\{\begin{array}{l}x+2y-4≤0\\ x-y-1≤0\\ x≥1\end{array}\right.$表示的平面区域为Ω,若在Ω中存在一点P(x,y)使得-2≤ax-y≤3成立,则实数a的取值范围是-2≤a≤$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若x,y满足约束条件$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+2y-2≤0\end{array}\right.$,则z=x-y的最大值为(  )
A.$\frac{1}{2}$B.1C.3D.-1

查看答案和解析>>

同步练习册答案