精英家教网 > 高中数学 > 题目详情
6.分解因式:a3+b3+c3-3abc.

分析 原式变形为(a+b)3+c3-3a2b-3ab2-3abc,分组利用乘法公式且提取公因式(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)即可得出.

解答 解:原式=(a+b)3+c3-3a2b-3ab2-3abc
=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)
=(a+b+c)(a2+b2+c2-ab-ac-bc)

点评 本题考查了乘法公式、因式分解方法,考查了变形能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=2x-x2(x∈[0,3])的最大值M与最小值m的和等于(  )
A.-1B.0C.1D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.下列表达式中是离散型随机变量X的分布列的是(  )
A.P(X=i)=0.1,i=0,1,2,3,4B.P(X=i)=$\frac{{i}^{2}+5}{50}$,i=1,2,3,4,5
C.P(X=i)=$\frac{i}{10}$,i=1,2,3,4,5D.P(X=i)=0.2,i=1,2,3,4,5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\left\{\begin{array}{l}{-\frac{1}{2}x+\frac{1}{2}}&{(x≤-1)}\\{{x}^{2}}&{(-1<x<1)}\\{\frac{1}{2}x+\frac{1}{2}}&{(x≥1)}\end{array}\right.$
(1)求f(-2),f(0),f(2)的值
(2)作出函数f(x)的简图.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设E,F分别是Rt△ABC的斜边BC上的两个三等分点,已知AB=6,AC=3,则$\overrightarrow{AE}$•$\overrightarrow{AF}$=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,过圆外一点P分别作⊙O的两条切线PA,PB和一条割线PDC,记PA的中点为M,连接CM与AB交于点E.求证:DE∥PA.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=log${\;}_{\frac{1}{2}}$(-x2+2x)的单调递增区间是 (  )
A.(-∞,1)B.(1,+∞)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2+x-1.
(1)求f(2),f($\frac{1}{x}$);
(2)若f(x)=5,求x的值;
(3)若f(x)≥f(a)对一切x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知递减等差数列{an}的前三项和为18,前三项的乘积为66,求数列的通项公式.

查看答案和解析>>

同步练习册答案