精英家教网 > 高中数学 > 题目详情
一个长、宽分别为
3
和1的长方形内接于圆(如图),质地均匀的粒子落入图中(不计边界),则落在长方形内的概率等于(  )
A、
3
π
B、
π
3
C、
3
D、π
考点:几何概型
专题:概率与统计
分析:确定矩形的面积、圆的面积,利用几何概率公式,可得结论.
解答: 解:由题意,矩形的面积S=
3
×1=
3

圆的直径为
(
3
)2+1
=2,圆的面积S′=π,
记“质地均匀的粒子落入长方形内”为事件B,由几何概率的计算公式可得P(B)=
3
π

故选:A.
点评:本题主要考查了与面积有关的几何概率公式的应用,解题中的关键是要分别求出矩形及圆的面积,属于公式的简单应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的首项为1,从第二项起每项都等于它前面各项之和.求数列{an}的通项公式an及其前n项之和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
sin(ax+
7
)的最小正周期为4π,则正实数a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若A={(2,-2),(2,2)},则集合A中元素的个数是(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F分别为椭圆
x2
2
+y2=1的中心和右焦点,点P为椭圆上的任意一点,则
OP
FP
的最小值为(  )
A、2-
2
B、
1
2
C、2+
2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

有四个关于三角函数的命题:
p1:?x∈R,使得sinx+cosx=
3
2

p2:?x,y∈R,使得sin(x+y)=sinx+siny;
p3:?x∈[0,π],都有
1-cos2x
2
=sinx;
p4:任意锐角△ABC中,恒有sinA>cosB成立;
其中真命题的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

集合M中的元素都是正整数,且若a∈M,则6-a∈M,则所有满足条件的集合M共有(  )
A、6个B、7个C、8个D、9个

查看答案和解析>>

科目:高中数学 来源: 题型:

对给出的下列命题:
①?x∈R,-x2<0;
②?x∈Q,x2=5;
③?x∈R,x2-x-1=0;
④若p:?x∈N,x2≥1,则¬p:?x∈N,x2<1.
其中是真命题的是(  )
A、①③B、②④C、②③D、③④

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知正三棱锥V-ABC的正视图、侧视图和俯视图如图1.求侧视图的面积.
(2)已知某几何体的三视图如图2,当a+b取最大值时,求这个几何体的体积.

查看答案和解析>>

同步练习册答案