精英家教网 > 高中数学 > 题目详情
17.设a≥0,若y=sin2x-acosx+b的最大值为0,最小值为-4,试求a与b的值,并求出使y取得最大、最小值时的x值.

分析 原函数变形为y=sin2x-acosx+b=1-cos2x-acosx+b=-(cosx+$\frac{a}{2}$)2+$\frac{{a}^{2}}{4}$+b+1,根据它的最值、利用二次函数的性质、分类讨论求得a、b的值.

解答 解:原函数变形为y=sin2x-acosx+b=1-cos2x-acosx+b
=-(cosx+$\frac{a}{2}$)2+$\frac{{a}^{2}}{4}$+b+1
∵-1≤cosx≤1,a≥0
∴若0≤a≤2,当cosx=-$\frac{a}{2}$时,
ymax=1+b+$\frac{a^2}{4}$=0     ①,
当cosx=1时,ymin=-${(1+\frac{a}{2})^2}+1+b+\frac{a^2}{4}$=-a+b=-4         ②,
联立①②式解得a=2,b=-2,
y取得最大、小值时的x值分别为:x=2kπ-π(k∈Z),x=2kπ(k∈Z),
若a>2时,$\frac{a}{2}$∈(1,+∞)
∴ymax=-${(1-\frac{a}{2})^2}+1+b+\frac{a^2}{4}=a+b$=0  ③
ymin=-${(1+\frac{a}{2})^2}+1+b+\frac{a^2}{4}=-a+b=-4$④
由③④得a=2时,舍去,
综上所述a=2,b=-2,y取得最大、小值时的x值分别为:x=2kπ-π(k∈Z),x=2kπ(k∈Z),

点评 本题主要考查余弦函数的值域,二次函数的性质,体现了转化、分类讨论的数学思想,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知点(2,9)在函数f(x)=ax(a>0且a≠1)图象上,对于函数y=f(x)定义域中的任意x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0;
④f($\frac{{x}_{1}+{x}_{2}}{2}$)<$\frac{f({x}_{1})+f({x}_{2})}{2}$
上述结论中正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,在四棱锥P-ABCD中,底面ABCD是边长为m的正方形,PD⊥底面ABCD,且PD=m,PA=PC=$\sqrt{2}$m,若在这个四棱锥内放一个球,则此球的最大半径是(  )
A.$\frac{1}{3}$(2-$\sqrt{2}$)mB.$\frac{1}{2}$(2+$\sqrt{2}$)mC.$\frac{1}{2}$(2-$\sqrt{2}$)mD.$\frac{1}{6}$(2+$\sqrt{2}$)m

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如果复数z=a+2i满足条件$|z|<\sqrt{5}$,那么实数a的取值范围是(  )
A.$(-2\sqrt{2},2\sqrt{2})$B.(-2,2)C.(-1,1)D.$(-\sqrt{3},\sqrt{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设f(x)=4sin(2x-$\frac{π}{3}$)+$\sqrt{3}$.
(1)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移$\frac{2π}{3}$个单位,得到函数y=g(x)的图象,求g(x)的单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某冷饮店只出售一种饮品,该饮品每一杯的成本价为3元,售价为8元,每天售出的第20杯及之后的饮品半价出售.该店统计了近10天的饮品销量,如图所示:
设x为每天饮品的销量,y为该店每天的利润.
(1)求y关于x的表达式;
(2)从日利润不少于96元的几天里任选2天,求选出的这2天日利润都是97元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.某同学寒假期间对其30位亲属的饮食习惯进行了一次调查,列出了如表2×2列联表:
偏爱蔬菜偏爱肉类合计
50岁以下4812
50岁以上16218
合计201030
则可以说其亲属的饮食习惯与年龄有关的把握为(  )
附:参考公式和临界值表K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知偶函数f(x)在[0,+∞)上单调递减,若f(x-2)>f(3),则x的取值范围是[-1,5].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.过点(3,-2)且与椭圆3x2+8y2=24有相同焦点的椭圆方程为(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{10}$=1B.$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{15}$+$\frac{{y}^{2}}{10}$=1D.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{10}$=1

查看答案和解析>>

同步练习册答案