12£®Ä³¹¤³ÌÉ豸×âÁÞ¹«Ë¾ÎªÁ˵÷²éA£¬BÁ½ÖÖÍÚ¾ò»úµÄ³ö×âÇé¿ö£¬ÏÖËæ»ú³éÈ¡ÁËÕâÁ½ÖÖÍÚ¾ò»ú¸÷100̨£¬·Ö±ðͳ¼ÆÁËÿ̨ÍÚ¾ò»úÔÚÒ»¸öÐÇÆÚÄڵijö×âÌìÊý£¬Í³¼ÆÊý¾ÝÈçÏÂ±í£º
AÐͳµÍÚ¾ò»ú
³ö×âÌìÊý1234567
³µÁ¾Êý51030351532
BÐͳµÍÚ¾ò»ú
³ö×âÌìÊý1234567
³µÁ¾Êý1420201615105
£¨¢ñ£©¸ù¾ÝÕâ¸öÐÇÆÚµÄͳ¼ÆÊý¾Ý£¬½«ÆµÂÊÊÓΪ¸ÅÂÊ£¬Çó¸Ã¹«Ë¾Ò»Ì¨AÐÍÍÚ¾ò»ú£¬Ò»Ì¨BÐÍÍÚ¾ò»úÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊ£»
£¨¢ò£©Èç¹ûA£¬BÁ½ÖÖÍÚ¾ò»úÿ̨ÿÌì³ö×â»ñµÃµÄÀûÈóÏàͬ£¬¸Ã¹«Ë¾ÐèÒª´ÓA£¬BÁ½ÖÖÍÚ¾ò»úÖйºÂòһ̨£¬ÇëÄã¸ù¾ÝËùѧµÄͳ¼ÆÖªÊ¶£¬¸ø³ö½¨ÒéÓ¦¸Ã¹ºÂòÄÄÒ»ÖÖÀàÐÍ£¬²¢ËµÃ÷ÄãµÄÀíÓÉ£®

·ÖÎö £¨I£©É衰ʼþAi±íʾһ̨AÐÍÍÚ¾ò»úÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪiÌ족£¬¡°Ê¼þBj±íʾһ̨BÐÍÍÚ¾ò»úÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪjÌ족£¬Æäi£¬j=1£¬2£¬¡­£¬7£®Ôò¸Ã¹«Ë¾Ò»Ì¨AÐÍÍÚ¾ò»ú£¬Ò»Ì¨BÐÍÍÚ¾ò»úÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊΪP£¨A1B3+A2B2+A3B1£©=P£¨A1B3£©+P£¨A2B2£©+P£¨A3B1£©=P£¨A1£©P£¨B3£©+P£¨A2£©P£¨B2£©+P£¨A3£©P£¨B1£©£¬´úÈë¸ÅÂʼÆËã¼´¿ÉµÃ³ö£®
£¨II£©ÀûÓÃÆµÂʿɵøÅÂÊ£¬·Ö±ðµÃ³öX£¬YµÄ·Ö²¼ÁУ¬¼´¿ÉµÃ³öÊýѧÆÚÍû£®

½â´ð ½â£º£¨I£©É衰ʼþAi±íʾһ̨AÐÍÍÚ¾ò»úÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪiÌ족£¬
¡°Ê¼þBj±íʾһ̨BÐÍÍÚ¾ò»úÔÚÒ»ÖÜÄÚ³ö×âÌìÊýÇ¡ºÃΪjÌ족£¬Æäi£¬j=1£¬2£¬¡­£¬7£®Ôò¸Ã¹«Ë¾Ò»Ì¨AÐÍÍÚ¾ò»ú£¬Ò»Ì¨BÐÍÍÚ¾ò»úÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊΪP£¨A1B3+A2B2+A3B1£©=P£¨A1B3£©+P£¨A2B2£©+P£¨A3B1£©=P£¨A1£©P£¨B3£©+P£¨A2£©P£¨B2£©+P£¨A3£©P£¨B1£©=$\frac{5}{100}¡Á\frac{20}{100}$+$\frac{10}{100}¡Á\frac{20}{100}$+$\frac{30}{100}¡Á\frac{14}{100}$=$\frac{9}{125}$£®
ËùÒԸù«Ë¾Ò»Ì¨AÐͳµ£¬Ò»Ì¨BÐͳµÒ»ÖÜÄںϼƳö×âÌìÊýÇ¡ºÃΪ4ÌìµÄ¸ÅÂÊΪ$\frac{9}{125}$£®
£¨¢ò£©ÉèXΪAÐÍÍÚ¾ò»ú³ö×âµÄÌìÊý£¬ÔòXµÄ·Ö²¼ÁÐΪ

X12   3456   7
P0.05  0.100.300.350.150.030.02
¡­£¨6·Ö£©
ÉèYΪBÐÍÍÚ¾ò»ú³ö×âµÄÌìÊý£¬ÔòYµÄ·Ö²¼ÁÐΪ
Y123   4   5   67
P0.140.200.200.16  0.15  0.100.05
¡­£¨8·Ö£©
EX=1¡Á0.05+2¡Á0.10+3¡Á0.30+4¡Á0.35+5¡Á0.15+6¡Á0.03+7¡Á0.02=3.62£®
EY=1¡Á0.14+2¡Á0.20+3¡Á0.20+4¡Á0.16+5¡Á0.15+6¡Á0.10+7¡Á0.05=3.48£®
һ̨AÀàÐ͵ÄÍÚ¾ò»úÒ»¸öÐÇÆÚ³ö×âÌìÊýµÄƽ¾ùֵΪ3.62Ì죬һ̨Á¾BÀàÐ͵ÄÍÚ¾ò»úÒ»¸öÐÇÆÚ³ö×âÌìÊýµÄƽ¾ùֵΪ3.48Ì죬ѡÔñAÀàÐ͵ÄÍÚ¾ò»ú¸ü¼ÓºÏÀí£®£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÁËÆµÂÊÓë¸ÅÂʵĹØÏµ¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁÐÓëÊýѧÆÚÍû£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®$\int_{-1}^1{£¨\sqrt{1-{x^2}}+sinx£©dx}$=$\frac{¦Ð}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-x+1£¬}&{x£¼1}\\{{2}^{x}-2£¬}&{x¡Ý1}\end{array}\right.$£¬g£¨x£©=$\frac{1}{x}$£¬Èô¶ÔÈÎÒâx¡Ê[m£¬+¡Þ£©£¨m£¾0£©£¬×Ü´æÔÚÁ½¸öx0¡Ê[0£¬2]£¬Ê¹µÃf£¨x0£©=g£¨x£©£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬+¡Þ£©B£®£¨0£¬1]C£®[$\frac{1}{2}$£¬+¡Þ£©D£®£¨0£¬$\frac{1}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®É踴ÊýzÂú×ãzi=1-2i£¬ÔòzµÄÐ鲿µÈÓÚ£¨¡¡¡¡£©
A£®-2iB£®-iC£®-1D£®-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=x-£¨x+1£©ln£¨x+1£©£¬g£¨x£©=x-a£¨x2+2x£©£¨a¡ÊR£©
£¨¢ñ£©Çóf£¨x£©µÄ×î´óÖµ£»
£¨¢ò£©Èôµ±x¡Ý0ʱ£¬²»µÈʽf£¨x£©¡Ýg£¨x£©ºã³ÉÁ¢£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÖ±Ïßl1£º2x-3y+1=0£¬Ö±Ïßl2¹ýµã£¨1£¬-1£©ÇÒÓëÖ±Ïßl1ƽÐУ®
£¨1£©ÇóÖ±Ïßl2µÄ·½³Ì£»
£¨2£©ÇóÖ±Ïßl2ÓëÁ½×ø±êÖáΧ³ÉµÄÈý½ÇÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®Å×ÎïÏßM£ºy2=axµÄ½¹µãF£¨1£¬0£©£¬¹ýµãK£¨-1£¬0£©µÄÖ±ÏßlÓëMÏཻÓÚA¡¢BÁ½µã£®
£¨¢ñ£©ÇókAF+kBFµÄÖµ£»
£¨¢ò£©ÇóÖ±ÏßlµÄбÂÊkµÄȡֵ·¶Î§£¬Ê¹µãFÂäÔÚÒÔABΪֱ¾¶µÄÔ²Í⣮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Èçͼ£¬ÔÚËıßÐÎABCDÖУ¬¡ÏBAD=90¡ã£¬AD¡ÎBC£¬PE¡ÍÆ½ÃæABCD£¬EÔÚADÉÏ£¬FD¡ÎPE£¬BC=AE=PE£¬DE=DF=$\frac{1}{2}$BC£®
£¨¢ñ£©ÇóÖ¤£ºAB¡ÍEF£»
£¨¢ò£©ÇóÖ¤£ºCF¡ÎÆ½ÃæPAB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªÁâÐÎABCDÈçͼ£¨1£©Ëùʾ£¬ÆäÖСÏACD=60¡ã£¬AB=2£¬ACÓëBDÏཻÓÚµãO£¬ÏÖÑØAC½øÐз­ÕÛ£¬Ê¹µÃÆ½ÃæACD¡ÍÆ½ÃæABC£¬È¡µãE£¬Á¬½ÓAE£¬BE£¬CE£¬DE£¬Ê¹µÃÏß¶ÎBEÔÙÆ½ÃæABCÄÚµÄͶӰÂäÔÚÏß¶ÎOBÉÏ£¬µÃµ½µÄͼÐÎÈçͼ£¨2£©Ëùʾ£¬ÆäÖСÏOBE=60¡ã£¬BE=2£®
£¨¢ñ£©Ö¤Ã÷£ºDE¡ÍAC£»
£¨¢ò£©Çó¶àÃæÌåABCDEµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸