分析 设两边分别为x cm、2xcm,高为y cm.则V=2x2y=72,y=$\frac{72}{2{x}^{2}}$,从而S=2(2x2+2xy+xy)=4x2+$\frac{216}{x}$.由此利用导数性质能求出它的高为4cm时,可使表面积最小.
解答 解:设两边分别为x cm、2xcm,高为y cm.
V=2x2y=72,y=$\frac{72}{2{x}^{2}}$,
S=2(2x2+2xy+xy)
=4x2+6xy=4x2+$\frac{216}{x}$.
S′=8x-$\frac{216}{{x}^{2}}$,令S′=0,解得x=3.
∴y=$\frac{72}{2×9}$=4(cm).
∴它的高为4cm时,可使表面积最小.
故答案为:4cm.
点评 本题考查长方体的高为多少时能使其表面积最小的求法,考查推理论证能力、运算求解能力,考查等价转化思想、数形结合思想,考查空间思维能力,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1}{e}$,2)∪(2,e) | B. | ($\frac{1}{e}$+1,e) | C. | (e-1,e) | D. | ($\frac{1}{e}$,e) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 240 | B. | -240 | C. | 60 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | sinα-cosα>1 | B. | sinα-cosα=1 | C. | sinα-cosα<1 | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com