精英家教网 > 高中数学 > 题目详情
12.定义运算$a*b=\left\{\begin{array}{l}a({a≤b})\\ b({a>b})\end{array}\right.$.例如,1*2=1,则函数f(x)=2sinx*cosx在区间[0,2π]上的单调递增区间为(0,$\frac{π}{4}$),(π,$\frac{5π}{4}$),($\frac{3π}{2},2π$).

分析 先根据题意确定函数f(x)的解析式,再由正余弦函数的图象可得答案

解答 解:函数f(x)=2sinx*cosx=$\left\{\begin{array}{l}{2sinx,(sinx≤cosx)}\\{2cosx,(sinx>cosx)}\end{array}\right.$,
f(x)=$\left\{\begin{array}{l}{2sinx,x∈[0,\frac{π}{4}]∪[\frac{5π}{4},2π]}\\{2cosx,x∈(\frac{π}{4},\frac{5π}{4})}\end{array}\right.$
故由正、余弦函数的图象可知,
函数f(x)在区间[0,2π]上的单调递增区间为(0,$\frac{π}{4}$),(π,$\frac{5π}{4}$),($\frac{3π}{2},2π$)
故答案为:(0,$\frac{π}{4}$),(π,$\frac{5π}{4}$),($\frac{3π}{2},2π$).

点评 本题主要考查正余弦函数的图象及单调性,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=lnx+$\frac{a}{x}$-1,a∈R
(I)若曲线y=f(x)在点(1,f(1))处的切线与直线x-y+1=0垂直,求函数的极值;
(II)当a>0时,若函数f(x)在区间[1,3]上的最小值为$\frac{1}{3}$,求a的值;
(III)讨论函数g(x)=f′(x)-$\frac{x}{3}$零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设如果执行下面的程序框图,那么输出的S=(  )
A.6B.120C.12D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知曲线f(x)=x3+x2+x+3在x=-1处的切线与抛物线y=2px2相切,则抛物线的准线方程为(  )
A.$x=\frac{1}{16}$B.x=1C.y=-1D.y=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数$f(x)=|{2sin({2x-\frac{π}{6}})+\frac{1}{2}}$|,则使f(x+c)=f(x-c)恒成立的最小正数c为$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f(x)=x5+ax3+bx-8且f(-2)=3,那么f(2)等于-19.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a=ln2,$b={5^{-\frac{1}{2}}}$,$c=\int_0^{\frac{π}{2}}{\frac{1}{2}cosxdx}$的大小关系为(  )
A.b<c<aB.b<a<cC.a<b<cD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD,PA=AB,E为PD中点.
(1)求证:直线PD⊥平面AEB;
(2)若直线PC交平面AEB于点F,求直线BF与平面PCD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.要做一个底面为长方形的带盖的箱子,其体积为72cm3,其底面两邻边长之比为1:2,则它的高为4cm时,可使表面积最小.

查看答案和解析>>

同步练习册答案