精英家教网 > 高中数学 > 题目详情
在平面直角坐标系xOy中,已知圆C1:(x-3)2+(y+2)2=4,圆C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,试求出所有满足条件的点P的坐标;
(2)若斜率为正数的直线l平分圆C1,求证:直线l与圆C2总相交.
【答案】分析:(1)设P为坐标轴上的点,满足:过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2,可设出P点的坐标,由直线与圆相切的性质及题设条件得到关于所引入参数的方程,解方程,有几个解,则满足条件的点P的坐标就有几个.
(2)斜率为正数的直线l平分圆C1,故可引入参数k(>0),用待定系数法表示出直线的方程,然后求出圆心到直线的距离,与圆的半径作比较即可确定直线与圆的位置关系是相交.
解答:解:(1)由题设条件,圆C1的圆心坐标(3,-2),半径为2,圆C2的圆心坐标(-m,-m-5),半径为
∵过点P分别作圆C1与圆C2的一条切线,切点分别为T1、T2,使得PT1=PT2
∴PC12-4=PC22-(2m2+8m+10)
若点P在X轴上,设P(x,0),将P(x,0)及圆心的坐标代入整理得(2m-6)x=-2m+6,故x=-1,
即P(-1,0)
若点P在Y轴上,可设P(0,y),同理解得y=-1,即P(0,-1)
故满足条件的点P的坐标为(-1,0)或(0,-1)
(2)若斜率为正数的直线l平分圆C1,可得此直线过定点(3,-2),
设此直线的方程为y+2=k(x-3),整理得kx-y-3k-2=0
圆C2的圆心到此直线的距离为d==
由于d2-r2=-(2m2+8m+10)
=
=-m2-2m-1-(m+3)2
=-(m+1)2-(m+3)2<0 (∵k>0)
可得在d<r,即直线l与圆C2总相交
点评:本题考查直线与圆的方程的应用,考查了直线与圆的位置关系转化以及以及直线与圆总相交的证明方法,一般证明直线与圆相交,只须说明直线上有一点在圆内即可,由于本题中直线斜率k为正,不是全体实数,故本题采用了用圆心到直线的距离与圆的半径相比较的方法来证明直线与圆相交,其规律是若圆心到直线的距离小于半径即可说明直线与圆相交.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为2
2
的圆C经过坐标原点O,椭圆
x2
a2
+
y2
9
=1(a>0)
与圆C的一个交点到椭圆两焦点的距离之和为10.
(1)求圆C的方程;
(2)若F为椭圆的右焦点,点P在圆C上,且满足PF=4,求点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,锐角α和钝角β的终边分别与单位圆交于A,B两点.若点A的横坐标是
3
5
,点B的纵坐标是
12
13
,则sin(α+β)的值是
16
65
16
65

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若焦点在x轴的椭圆
x2
m
+
y2
3
=1
的离心率为
1
2
,则m的值为
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•泰州三模)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知A(0,1),B(0,-1),C(t,0),D(
3t
,0)
,其中t≠0.设直线AC与BD的交点为P,求动点P的轨迹的参数方程(以t为参数)及普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•东莞一模)在平面直角坐标系xOy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F1(-1,0),且椭圆C的离心率e=
1
2

(1)求椭圆C的方程;
(2)设椭圆C的上下顶点分别为A1,A2,Q是椭圆C上异于A1,A2的任一点,直线QA1,QA2分别交x轴于点S,T,证明:|OS|•|OT|为定值,并求出该定值;
(3)在椭圆C上,是否存在点M(m,n),使得直线l:mx+ny=2与圆O:x2+y2=
16
7
相交于不同的两点A、B,且△OAB的面积最大?若存在,求出点M的坐标及对应的△OAB的面积;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案