精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),则a+2b的取值范围为(
A.
B.
C.(6,+∞)
D.[6,+∞)

【答案】C
【解析】解:函数f(x)=|lg(x﹣1)|, ∵1<a<b且f(a)=f(b),
则b>2,1<a<2,
,即
可得:ab﹣a﹣b=0.
那么:a=
则a+2b= ,当且仅当b= 时取等号.
∵b>2
∴a+2b= >6.
故选:C.

【考点精析】认真审题,首先需要了解函数的值域(求函数值域的方法和求函数最值的常用方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列{an}的首项为a1=1,且 ,(n∈N*).
(1)求a2 , a3的值,并证明:a2n1<a2n+1<2;
(2)令bn=|a2n1﹣2|,Sn=b1+b2+…+bn . 证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数). (Ⅰ)若a=1,求函数y=f(x)g(x)在区间[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,关于x的方程f(x)=kg(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin2 +cos2A=
(1)求A的值;
(2)若a= ,求bc的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=3sin(4x+ )图象上所有点的横坐标伸长到原来的2倍,再向右平移 个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是(
A.x=
B.x=
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求 的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x﹣1.
(1)求f(x)的函数解析式,并用分段函数的形式给出;
(2)作出函数f(x)的简图;
(3)写出函数f(x)的单调区间及最值.

查看答案和解析>>

同步练习册答案