【题目】已知函数f(x)=|lg(x﹣1)|,若1<a<b且f(a)=f(b),则a+2b的取值范围为( )
A.![]()
B.![]()
C.(6,+∞)
D.[6,+∞)
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项为a1=1,且
,(n∈N*).
(1)求a2 , a3的值,并证明:a2n﹣1<a2n+1<2;
(2)令bn=|a2n﹣1﹣2|,Sn=b1+b2+…+bn . 证明:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数). (Ⅰ)若a=1,求函数y=f(x)g(x)在区间[﹣2,0]上的最大值;
(Ⅱ)若a=﹣1,关于x的方程f(x)=kg(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1 , x2∈[0,2],x1≠x2 , 不等式|f(x1)﹣f(x2)|<|g(x1)﹣g(x2)|均成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数f(x)=3sin(4x+
)图象上所有点的横坐标伸长到原来的2倍,再向右平移
个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是( )
A.x= ![]()
B.x= ![]()
C.![]()
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2+2x+alnx(a∈R).
(1)讨论函数f(x)的单调性;
(2)当t≥1时,不等式f(2t﹣1)≥2f(t)﹣3恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P﹣ABC中,平面PAB⊥平面ABC,AP⊥BP,AC⊥BC,∠PAB=60°,∠ABC=45°,D是AB中点,E,F分别为PD,PC的中点.
(Ⅰ)求证:AE⊥平面PCD;
(Ⅱ)求二面角B﹣PA﹣C的余弦值;
(Ⅲ)在棱PB上是否存在点M,使得CM∥平面AEF?若存在,求
的值;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2﹣2x﹣1.
(1)求f(x)的函数解析式,并用分段函数的形式给出;
(2)作出函数f(x)的简图;
(3)写出函数f(x)的单调区间及最值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com