精英家教网 > 高中数学 > 题目详情

,函数 
(1)当时,求曲线处的切线方程;
(2)当时,求函数的单调区间;
(3)当时,求函数的最小值

(1) ;(2) 内单调递减,内单调递增;
(3) 

解析试题分析:(1)写出函数的解析式,求导得斜率,求切点,进而得直线方程,注意解析式的取舍(时);(2)函数为分段函数,分段判单调性,求出函数的单调区间;(3)分两种情况进行分析,在第二种情况下要对与区间进行比较,又分三种情况进行判断单调性,求最小值
试题解析:(1)当时,,令
所以切点为,切线斜率为1,
所以曲线处的切线方程为: 
(2)当
时,
内单调递减,内单调递增;
时,恒成立,故内单调递增;
综上,内单调递减,内单调递增.
(3)①当时, 
恒成立. 上增函数.
故当时,
② 当时,

ⅰ)当,即时,时为正数,所以函数上为增函数,
故当时,,且此时 
ⅱ)当,即时,时为负数,在时为正数,
所以上为减函数,在为增函数
故当时,,且此时 
ⅲ)当,即时,时为负数,所以函数上为减函数,
故当时, 
综上所述,当时,函数时的最小值都是 
所以此时函数的最小值为;当时,函数

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(Ⅰ)如果函数在区间上是单调函数,求的取值范围;
(Ⅱ)是否存在正实数,使得函数在区间内有两个不同的零点(是自然对数的底数)?若存在,求出实数的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若函数处的切线垂直轴,求的值;
(Ⅱ)若函数在区间上为增函数,求的取值范围;
(Ⅲ)讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若对一切恒成立,求的最大值;
(2)设,且是曲线上任意两点,若对任意,直线的斜率恒大于常数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)讨论函数的单调性;
(2)证明:若,则对于任意

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)已知函数.
(1)若函数上单调递增,求实数的取值范围.
(2)记函数,若的最小值是,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中.
(1)当时,求函数在区间上的最大值;
(2)当时,若恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,将一矩形花坛扩建成一个更大的矩形花坛,要求的延长线上,的延长线上,且对角线点.已知米,米。

(1)设(单位:米),要使花坛的面积大于32平方米,求的取值范围;
(2)若(单位:米),则当的长度分别是多少时,花坛的面积最大?并求出最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的单调区间;
(2)若在区间[0,2]上恒有,求的取值范围.

查看答案和解析>>

同步练习册答案