精英家教网 > 高中数学 > 题目详情
13.下列每组中的两个函数是同一函数的是(  )
A.f(x)=1与g(x)=x0B.$f(x)=\root{3}{x^3}$与g(x)=xC.f(x)=x与$g(x)={(\sqrt{x})^2}$D.f(x)=x与$g(x)=\sqrt{x^2}$

分析 分别由函数的定义域及对应关系是否相同逐一核对四个选项得答案.

解答 解:∵f(x)=1的定义域为R,g(x)=x0的定义域为{x|x≠0},两函数的定义域不同,不是同一函数;
$f(x)=\root{3}{{x}^{3}}$=x,g(x)=x,两函数为相同函数;
f(x)=x的定义域为R,g(x)=$(\sqrt{x})^{2}$的定义域为[0,+∞),两函数的定义域不同,不是同一函数;
f(x)=x,$g(x)=\sqrt{x^2}$=|x|,两函数对应关系不同,不是相同函数.
故选:B.

点评 本题考查函数相等的概念,考查了函数定义域的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|0<x≤2},B={x|-1<x<$\frac{1}{2}$},则A∪B是(  )
A.(0,$\frac{1}{2}$)B.(0,2)C.(-∞,-1]∪(2,+∞)D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,经过原点和点$(1,-\sqrt{3})$的直线的倾斜角α=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.下面结论中,正确命题的个数为3.
①当直线l1和l2斜率都存在时,一定有k1=k2⇒l1∥l2
②如果两条直线l1与l2垂直,则它们的斜率之积一定等于-1.
③已知直线l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0(A1、B1、C1、A2、B2、C2为常数),若直线l1⊥l2,则A1A2+B1B2=0.
④点P(x0,y0)到直线y=kx+b的距离为$\frac{|k{x}_{0}+b|}{\sqrt{1+{k}_{2}}}$.
⑤直线外一点与直线上一点的距离的最小值就是点到直线的距离.
⑥若点A,B关于直线l:y=kx+b(k≠0)对称,则直线AB的斜率等于-$\frac{1}{k}$,且线段AB的中点在直线l上.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,在△ABC中,$\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AB}$,$\overrightarrow{AN}=\frac{1}{4}\overrightarrow{AC}$,BN与CM交于点E,若$\overrightarrow{AE}=x\overrightarrow{AB}+y\overrightarrow{AC}$,则x+y=$\frac{5}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解不等式a2x2-ax-2<0(a∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{{\begin{array}{l}{{x^2},(x≤0)}\\{\sqrt{4-{x^2}}(x>0)}\end{array}}$,则$\int_{-1}^2{f(x)dx}$=$π+\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.“x2<1”是“0<x<1”成立的必要不充分条件.(从“充要”、“充分不必要”、“必要不充分”中选择一个正确的填写)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=x2-1(x≤-1)的反函数f-1(x)=$-\sqrt{x+1},(x≥0)$.

查看答案和解析>>

同步练习册答案