精英家教网 > 高中数学 > 题目详情
已知a、b、c是△ABC中A、B、C的对边,关于x的方程b(x2+1)+c(x2-1)-2ax=0 有两个相等的实根,且sinCcosA-cosCsinA=0,试判定△ABC的形状.
分析:由已知方程有两个相等的实数根,得到根的判别式等于0列出关系式,利用勾股定理的逆定理判断出B为直角,然后利用两角差的正弦函数公式化简已知的等式,根据C-A的范围,得到A与C相等,进而得到原三角形为等腰直角三角形.
解答:解:∵(b+c)x2-2ax+(b-c)=0有相等实根,
∴△=4a2-4(b+c)(b-c)=0,(3分)
∴a2+c2-b2=0,
∴B=90°.(3分)
又sinCcosA-cosCsinA=0,
得sin(C-A)=0,(3分)
∵-
π
2
<C-A<
π
2
.(2分)
∴A=C.
∴△ABC是B为直角的等腰直角三角形.(3分)
点评:此题考查学生掌握根的判别式与方程解得关系,会利用勾股定理的逆定理判断三角形是直角三角形,灵活运用两角和与差的正弦函数公式化简求值,是一道中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

3、已知a,b,c是三条不同的直线,α,β,γ是三个不同的平面,下列命题中正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A、B、C是直线l上的三点,向量
OA
OB
OC
满足
OA
-(y+1-lnx)
OB
+
1-x
ax
OC
=
o
,(O不在直线l上a>0)
(1)求y=f(x)的表达式;
(2)若函数f(x)在[1,∞]上为增函数,求a的范围;
(3)当a=1时,求证lnn>
1
2
+
1
3
+
1
4
+…+
1
n
,对n≥2的正整数n成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c是直角三角形的三边,其中c为斜边,若实数M使不等式
1
a
+
1
b
+
1
c
M
a+b+c
恒成立,则实数M的最大值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知A、B、C是锐角△ABC的三个内角,内量p=(1+sinA,1+cosA),q=(1+sinB,-1-cosB),则p与q的夹角是


  1. A.
    锐角
  2. B.
    钝角
  3. C.
    直角
  4. D.
    不确定

查看答案和解析>>

科目:高中数学 来源:0119 期末题 题型:单选题

已知a、b、c是直线,α、β是平面,给出下列五种说法:
①若a⊥b,b⊥c,则a∥c;   ②若a∥b,b⊥c,则a⊥c;
③若a∥β,bβ,则a∥b; ④若a与b异面,且a∥β,则b与β相交;
⑤若a∥c,α∥β,a⊥α,则c⊥β。
其中正确说法的个数是

[     ]

A.4
B.3
C.2
D.1

查看答案和解析>>

同步练习册答案