精英家教网 > 高中数学 > 题目详情

【题目】设f(x)为定义R在的偶函数,当0≤x≤2时,y= ;当x>2时,y=f(x)的图象是顶点在p(3,4),且过点A(2,3)的抛物线的一部分.
(1)求函数f(x)的解析式;
(2)在下面的直角坐标系中直接画出函数f(x)的图象,写出函数f(x)的单调区间(无需证明).

【答案】
(1)解:由题意,当x>2时设f(x)=a(x﹣3)2+4,

带入点A(2,3)得a=﹣1,

∴f(x)=﹣(x﹣3)2+4,

当﹣2≤x<0时,当0<﹣x≤2时,

f(x)=f(﹣x)=﹣

当x<﹣2时,﹣x>2,

f(x)=f(﹣x)=﹣(﹣x﹣3)2+4=)=﹣(x+3)2+4,

∴f(x)=


(2)解:函数图象如下图所示:

有图可知:f(x)的单调递增区间为(﹣∞,﹣3],[0,3]

单调递减区间为[﹣3,0],[3,+∞)


【解析】(1)根据已知结合二次函数的图象和性质,及偶函数f(x)=f(﹣x)的性质,可得函数f(x)的解析式;(2)画出函数的图象,数形结合,可得函数f(x)的单调区间.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面四边形ABCD为菱形,AB=2,BD=2 ,M,N分别是线段PA,PC的中点. (Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求异面直线MN与BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数a的值;
(2)用定义证明函数f(x)在R上的单调性;
(3)若对任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网络营销部门为了统计某市网友2016年12月12日的网购情况,从该市当天参与网购的顾客中随机抽查了男女各30人,统计其网购金额,得到如下频率分布直方图:

网购达人

非网购达人

合计

男性

30

女性

12

30

合计

60

若网购金额超过千元的顾客称为“网购达人”,网购金额不超过千元的顾客称为“非网购达人”.

(Ⅰ)若抽取的“网购达人”中女性占12人,请根据条件完成上面的列联表,并判断是否有99%的把握认为“网购达人”与性别有关?

(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”、“网购达人”中用分层抽样的方法确定12人,若需从这12人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列和数学期望.

(参考公式: ,其中

P()

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x∈R),若f(x)满足f(﹣x)=﹣f(x).
(1)求实数a的值;
(2)证明f(x)是R上的单调减函数(定义法).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,角 的对边分别为 .已知

(1)求角的大小;

2)若 的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={x|y= },B={x|﹣1≤2x﹣1≤0},则(RA)∩B=(
A.(4,+∞)
B.
C.
D.(1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是椭圆的左、右顶点, 为左焦点,点是椭圆上异于的任意一点,直线与过点且垂直于轴的直线交于点,直线于点.

(1)求证:直线与直线的斜率之积为定值;

(2)若直线过焦点 ,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】石家庄市为鼓励居民节约用电,采用分段计费的方法计算电费,每月用电不超过100度时,按每度0.52元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.
(1)设月用电x度时,应缴电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如表:

月份

一月

二月

三月

合计

缴费金额

82元

64元

46.8元

192.8元

问小明家第一季度共用电多少度?

查看答案和解析>>

同步练习册答案