精英家教网 > 高中数学 > 题目详情

【题目】石家庄市为鼓励居民节约用电,采用分段计费的方法计算电费,每月用电不超过100度时,按每度0.52元计算,每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.
(1)设月用电x度时,应缴电费y元,写出y关于x的函数关系式;
(2)小明家第一季度缴纳电费情况如表:

月份

一月

二月

三月

合计

缴费金额

82元

64元

46.8元

192.8元

问小明家第一季度共用电多少度?

【答案】
(1)解:由题意:每月用电不超过100度时,按每度0.52元计算:

可得y=0.52x,(0≤x≤100);

每月用电量超过100度时,其中的100度仍按原标准收费,超过的部分每度按0.6元计算.

可得:y=52+(x﹣100)×0.6,(x>100);

故而可得y关于x的函数关系式为


(2)解:由(1)可知,按每度0.52元计算的最高费用是52元;

一月:∵82>52,

∴0.6x﹣8=82,x=150,

二月:∵64>52,

∴0.6x﹣8=64,x=120.

三月:∵46.8<52,

∴0.52x=46.8,x=90.

∴共用150+120+90=360度.

答:小明家第一季度共用电360度


【解析】(1)根据题意,采用分段计费的方法计算电费,其为分段函数,利用分段函数的性质求解即可.(2)根据分函数的解析式,带值计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)为定义R在的偶函数,当0≤x≤2时,y= ;当x>2时,y=f(x)的图象是顶点在p(3,4),且过点A(2,3)的抛物线的一部分.
(1)求函数f(x)的解析式;
(2)在下面的直角坐标系中直接画出函数f(x)的图象,写出函数f(x)的单调区间(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(4x+1)﹣x,g(x)=log2a+log2(2x )(a>0,x>1).
(1)证明函数f(x)为偶函数;
(2)若函数f(x)﹣g(x)只有一个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.

(Ⅰ)求图中的值;

(Ⅱ)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数:R(x)= ,其中x是仪器的月产量.(注:总收益=总成本+利润)
(1)将利润x表示为月产量x的函数;
(2)当月产量为何值时,公司所获利润最大?最大利润为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)有两个极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,函数g(x)=b﹣f(2﹣x),其中b∈R,若函数y=f(x)﹣g(x)恰有4个零点,则b的取值范围是(
A.( ,+∞)
B.(﹣∞,
C.(0,
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(ax﹣bx)(a>1>b>0).
(1)求f(x)的定义域;
(2)若f(x)在(1,+∞)上递增且恒取正值,求a,b满足的关系式.

查看答案和解析>>

同步练习册答案