精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2x3-3x2+6
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极大值和极小值.
考点:利用导数研究函数的极值,利用导数研究函数的单调性
专题:导数的概念及应用
分析:(1)f′(x)=6x2-6x令f′(x)>0得x<0或x>1,令f′(x)<0得0<x<1,从而函数f(x)的单调增区间:(-∞,0)和(1,+∞),单调减区间:(0,1)
(2)由(1)得:x=0函数取得极大值,x=1函数取到极小值,从而函数f(x)极大值=f(0)=6函数f(x)极小值=f(1)=5.
解答: 解:(1)f′(x)=6x2-6x
令f′(x)>0,
即6x2-6x>0,
得x<0或x>1
令f′(x)<0,
即6x2-6x<0,
得0<x<1,
∴函数f(x)的单调增区间为:(-∞,0)和(1,+∞),
函数f(x)的单调减区间为:(0,1)
(2)由(1)得:x=0函数取得极大值,x=1函数取到极小值,
∴函数f(x)极大值=f(0)=6
函数f(x)极小值=f(1)=5.
点评:本题考察了函数的单调性,函数的极值问题,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知i是虚数单位,(1+2i)z=i,则
.
z
=(  )
A、
2
5
+
1
5
i
B、-
2
5
+
1
5
i
C、
2
5
-
1
5
i
D、-
2
5
-
1
5
i

查看答案和解析>>

科目:高中数学 来源: 题型:

交通局对上班、下班高峰时的车速情况作抽样调查,行驶时速(单位:km/h)的统计数据用茎叶图表示如图:

设上、下班时速的平均数分别为
.
x
.
x
,中位数分别为
.
m
.
m
,则(  )
A、
.
x
.
x
.
m
.
m
B、
.
x
.
x
.
m
.
m
C、
.
x
.
x
.
m
.
m
D、
.
x
.
x
.
m
.
m

查看答案和解析>>

科目:高中数学 来源: 题型:

参数方程
x=
t
+1
y=1-2
t
(t为参数)表示什么曲线(  )
A、一条直线B、一个半圆
C、一条射线D、一个圆

查看答案和解析>>

科目:高中数学 来源: 题型:

化简
AC
-
DC
+
DA
=(  )
A、
AD
B、
DA
C、
DC
D、
0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-
2a-1
x
-2alnx(a∈R)
(Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(f(x),1),向量
b
=(2x+|x|-1,2|x|),且满足
a
b

(1)若f(x)=
15
4
,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[2,4]恒成立,求实数m的取值范围.
(3)若2tf(2t)+mf(t)≥0对于t∈[1,2]有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:△ABC的外心S,重心G,垂心H在一条直线上,且G分
HS
得比为2:1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+bx+4lnx的极值点为1和2.
(1)求实数a,b的值;
(2)求函数f(x)在区间(0,3]上的最大值.

查看答案和解析>>

同步练习册答案