精英家教网 > 高中数学 > 题目详情
已知向量
a
=(f(x),1),向量
b
=(2x+|x|-1,2|x|),且满足
a
b

(1)若f(x)=
15
4
,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[2,4]恒成立,求实数m的取值范围.
(3)若2tf(2t)+mf(t)≥0对于t∈[1,2]有解,求实数m的取值范围.
考点:导数在最大值、最小值问题中的应用,平行向量与共线向量
专题:综合题,不等式的解法及应用
分析:(1)由
a
b
,得f(x)•2|x|=2x+|x|-1,由此可求f(x),然后解方程f(x)=
15
4
可得2x,进而得x;
(2)2tf(2t)+mf(t)≥0可化为2t(2t+2-t)+m≥0,从而化为[2t(2t+2-t)+m]min≥0,利用函数单调性易求最小值;
(3)由(2)可知不等式可转化为[2t(2t+2-t)+m]max≥0,利用单调性可求最大值;
解答: 解:(1)由
a
b
,得f(x)•2|x|=2x+|x|-1,
∴f(x)=2x-2-|x|
∵f(x)=
15
4
,∴2x-2-|x|=
15
4

可知x>0,∴2x-2-x=
15
4

解得2x=4,∴x=2.
(2)2tf(2t)+mf(t)≥0,即2t(22t-2-|2t|)+m(2t-2-|t|)≥0,
又t∈[2,4],
∴2t(22t-2-2t)+m(2t-2-t)≥0,即2t(2t+2-t)+m≥0,
而2t(2t+2-t)+m=22t+1+m≥22×2+1+m=17+m,
∴17+m≥0,解得m≥-17.
(3)由(2)知,2tf(2t)+mf(t)≥0对于t∈[1,2]有解,即2t(2t+2-t)+m≥0有解,
当t∈[1,2]时,2t(2t+2-t)+m=22t+1+m∈[5+m,17+m],
∴17+m≥0,解得m≥-17.
点评:该题考查函数恒成立、指数函数的单调性、向量共线的充要条件等知识,考查转化思想,考查学生分析解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100米到达B处,又测得C对于山坡的斜度为45°,若CD=50米,山坡对于地平面的坡角为θ,则cosθ=(  )
A、
3
2
B、2-
3
C、
3
-1
D、
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lnx-x+2的零点所在的区间为(  )
A、(4,5)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-3x2+6
(1)求函数f(x)的单调区间;
(2)求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(
3
,1),
b
=(-2
3
,k),求
(1)k为何值时,
a
b

(2)k为何值时,
a
b

查看答案和解析>>

科目:高中数学 来源: 题型:

据民生所望,相关部门对所属服务单位进行整治性核查,规定:从甲类3个指标项中随机抽取2项,从乙类2个指标项中随机抽取1项.在所抽查的3个指标项中,3项都优秀的奖励10万元;只有甲类2项优秀的奖励6万元;甲类只有一项优秀,乙类1项优秀的提出警告,有2项或2项以上不优秀的停业运营并罚款8万元.已知某家服务单位甲类3项指标项中有2项优秀,乙类2项指标项中有1项优秀,求:
(Ⅰ)这家单位受到奖励的概率;
(Ⅱ)这家单位这次整治性核查中所获金额的均值(奖励为正数,罚款为负数).

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:已知sin(x+
π
6
)=
1
4
,求sin(
6
+x)+sin(
11π
6
-x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
1
3
x3-
1
2
ax2+(a-1)x,
(1)当a=1时,求曲线y=f(x)在点(0,0)处的切线方程;
(2)当a为何值时,函数y=f(x)有极值?并求出极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某次数学考试中,其中一个小组的成绩是:55,89,69,73,81,56,90,74,82.试画一个程序框图:程序中用S(i)表示第i个学生的成绩,先逐个输入S(i)( i=1,2,…),然后从这些成绩中搜索出小于75的成绩.(注意:要求程序中必须含有循环结构)

查看答案和解析>>

同步练习册答案