精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=|x-2|+|x-3|,
(1)解不等式:f(x)≤2;
(2)方程f(x)=ax-2有解,求a的取值范围.

分析 (1)求出各个区间上的x的范围,求出不等式的解集即可;(2)结合图象求出a的范围即可.

解答 解:(1)f(x)=$\left\{\begin{array}{l}{2x-5,x≥3}\\{1,2<x<3}\\{-2x+5,x≤2}\end{array}\right.$,
x≥3时,2x-5≤2,解得:x≤$\frac{7}{2}$,
2<x<3时,1<2恒成立,
x≤2时,-2x+5≤2,解得:x≥$\frac{3}{2}$,
综上,不等式的解集是[$\frac{3}{2}$,$\frac{7}{2}$];
(2)如图示:

直线AB的斜率是1,
若方程f(x)=ax-2有解,
即函数y=f(x)和y=ax-2有交点,
则a>1或a<-2.

点评 本题考查了解绝对值不等式问题,考查数形结合思想以及分类讨论思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.数列{an}中,a1=8,a4=2且满足an+2=2an+1-an(n∈N*),则an=-2n+10,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在平面直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C1的极坐标方程为ρ2-4ρcosθ+3=0,θ∈[0,2π].
(1)求C1的直角坐标方程;
(2)曲线C2的参数方程为$\left\{\begin{array}{l}{x=tcos\frac{π}{6}}\\{y=tsin\frac{π}{6}}\end{array}\right.$(t为参数),求C1与C2的公共点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求下列各式中x的值.
(1)log8x=-$\frac{2}{3}$;
(2)logx27=$\frac{3}{4}$;
(3)ax=1(a>0且a≠1);
(4)5lgx=25;
(5)log7[log3(log2x)]=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知l的参数方程$\left\{\begin{array}{l}{x=-2+5t}\\{y=1-2t}\end{array}\right.$(t为参数),则直线l与x轴的交点坐标为$(\frac{1}{2},0)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{x}$+alnx-1,a∈R.
(1)讨论函数f(x)的单调性;
(2)若对任意的x>0,f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某小区一住户在楼顶违规私自建了“阳光房”,该小区其他居民对此意见很大,通过物业和城管部门多次上门协调,该住户终于拆除了“阳光房”,对此有人认为既然已经建成再拆除太可惜了,为此业主委员会通过随机询问小区100名性别不同的居民对此件事情的看法,得到如下的2×2列联表
认为应该拆除认为太可惜了总计
451055
301545
总计7525100
附:
P(K2≥k)0.100.050.025
k2.7063.8415.024
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d
参照附表,由此可知下列选项正确的是(  )
A.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“是否认为拆除太可惜了与性别无关”
C.有90%以上的把握认为“是否认为拆除太可惜了与性别有关”
D.有90%以上的把握认为“是否认为拆除太可惜了与性别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知a>b,c>d,则下列不等式:(1)a+c>b+d;(2)a-c>b-d;(3)ac>bd;(4)$\frac{a}{c}$>$\frac{b}{d}$中恒成立的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在平面直角坐标系中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s为参数),曲线C的参数方程为$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=$\sqrt{2}$.

查看答案和解析>>

同步练习册答案