精英家教网 > 高中数学 > 题目详情
11.在平面直角坐标系中,已知直线l的参数方程为$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s为参数),曲线C的参数方程为$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t为参数),若直线l与曲线C相交于A,B两点,则|AB|=$\sqrt{2}$.

分析 直线l的参数方程为$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s为参数),消去参数s可得普通方程.曲线C的参数方程为$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t为参数),消去参数化为普通方程.联立解得交点坐标,利用两点之间的距离公式即可得出.

解答 解:直线l的参数方程为$\left\{{\begin{array}{l}{x=1+s\;,\;}\\{y=1-s}\end{array}}\right.$(s为参数),消去参数s可得普通方程:x+y-2=0.
曲线C的参数方程为$\left\{{\begin{array}{l}{x=t+2\;,\;}\\{y={t^2}}\end{array}}\right.$(t为参数),消去参数化为:y=(x-2)2
联立$\left\{\begin{array}{l}{x+y-2=0}\\{y=(x-2)^{2}}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=0}\end{array}\right.$,或$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$..
取A(2,0),B(1,1),
则|AB|=$\sqrt{(2-1)^{2}+(0-1)^{2}}$=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了参数方程化为普通方程、曲线的交点、两点之间的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|x-2|+|x-3|,
(1)解不等式:f(x)≤2;
(2)方程f(x)=ax-2有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图所示,正方形ABCD所在的平面与三角形CDE所在的平面交于CD,且AE⊥平面CDE.
(1)求证:平面ABCD⊥平面ADE;
(2)已知AB=2AE=2,求三棱锥C-BDE的高h.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.某几何体的三视图如图所示,则该几何体的体积为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知在四棱锥P-ABCD中,底面ABCD为菱形且∠ADC=120°,E,F分别是AD,PB的中点且PD=AD.
(1)求证:EF∥平面PCD;
(2)若∠PDA=60°,求证:EF⊥BC;
(3)若PD⊥平面ABCD,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(Ⅰ)求证:平面PAB⊥平面ABCD;
(Ⅱ)若PA=PB,求二面角A-PC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知A、B、C、D为同一平面上的四个点,且满足AB=2,BC=CD=DA=1,∠BAD=θ,△ABD的面积为S,△BCD的面积为T.
(1)当θ=$\frac{π}{3}$时,求T的值;
(2)当S=T时,求cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α≠0)经过椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数)的左焦点F.
(1)求实数m的值;
(2)设直线l与椭圆C交于A、B两点,求|FA|×|FB|取最小值时,直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ln($\sqrt{1+9{x}^{2}}$-3x)+1,则f(lg2016)+f(lg$\frac{1}{2016}$)=(  )
A.-1B.0C.1D.2

查看答案和解析>>

同步练习册答案