精英家教网 > 高中数学 > 题目详情
如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2,AB=2,AA1=A1C=
(Ⅰ) 求侧棱B1B在平面A1ACC1上的正投影的长度.
(Ⅱ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅲ) 求侧面A1ABB1与底面ABC所成二面角的余弦值.

【答案】分析:(Ⅰ)由B1B∥平面A1ACC1,可得侧棱B1B在平面A1ACC1上的正投影的长度等于侧棱B1B的长度;
(Ⅱ)利用平面A1ACC1⊥平面ABC,可证A1D⊥底面ABC;
(Ⅲ)要求侧面A1ABB1与底面ABC所成二面角的大小,利用三垂线定理作出角,即作DE⊥AB,垂足为E,连A1E,则由A1D⊥面ABC,得A1E⊥AB.所以∠A1ED是面A1ABB1与面ABC所成二面角的平面角,求解即可.
解答:(Ⅰ)解:∵ABC-A1B1C1是斜三棱柱,∴B1B∥平面A1ACC1
故侧棱B1B在平面A1ACC1上的正投影的长度等于侧棱B1B的长度.(2分)
又BB1=AA1=,故侧棱B1B在平面A1ACC1的正投影的长度等于.(3分)
(Ⅱ)证明:∵AC=2,AA1=A1C=,∴AC2=AA12+AC12
∴△AA1C是等腰直角三角形,(5分)
又D是斜边AC的中点,∴A1D⊥AC(6分)
∵平面A1ACC1⊥平面ABC,∴A1D⊥底面ABC(7分)
(Ⅲ)解:作DE⊥AB,垂足为E,连A1E,
∵A1D⊥面ABC,AB?面ABC,∴A1D⊥AB,
∵A1D∩DE=D,∴AB⊥平面A1ED,(8分)
从而有A1E⊥AB,∴∠A1ED是面A1ABB1与面ABC所成二面角的平面角. (9分)
∵BC=2,AC=2,AB=2,∴AC2=BC2+AB2
∴△ABC是直角三角形,AB⊥BC
∴ED∥BC,
又D是AC的中点,BC=2,AC=2,∴DE=1,A1D=AD=
∴A1E==2
∴cos∠A1ED==,即侧面A1ABB1与底面ABC所成二面角的余弦值为.(14分)
点评:本题考查面面垂直,考查线面垂直,考查面面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1中,AB=AC,D为BC的中点.
(1)若平面ABC⊥平面BCC1B1,求证:AD⊥DC1
(2)求证:A1B∥平面ADC1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱(侧棱不垂直于底面)ABC-A1B1C1的侧面A1ACC1与底面ABC垂直,BC=2,AC=2
3
,AB=2
2
AA1=A1C=
6

(Ⅰ) 设AC的中点为D,证明A1D⊥底面ABC;
(Ⅱ) 求异面直线A1C与AB成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1,∠BCA=90°,AC=BC=2,A1在底面ABC上的射影恰为AC的中点D,且BA1⊥AC1
(1)求证:AC1⊥平面A1BC;
(2)求多面体B1C1ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知斜三棱柱ABC-A1B1C1的底面边长分别是AB=AC=10cm,BC=12cm,侧棱AA1=13cm,顶点A1与下底面各个顶点的距离相等,求这个棱柱的全面积.

查看答案和解析>>

同步练习册答案