精英家教网 > 高中数学 > 题目详情
已知sin(α+2β)=3sinα,β≠
2
,α+β≠
π
2
+nπ(k,n∈Z)
,则
tan(α+β)
tanβ
=
 
考点:两角和与差的正切函数
专题:计算题,三角函数的求值
分析:利用α+2β=(α+β)+β以及α=(α+β)-β,代换已知条件,利用两角和与差的三角函数化简,即可求出
tan(α+β)
tanβ
解答: 解:∵sin(α+2β)=3sinα,β≠
2
,α+β≠
π
2
+nπ(k,n∈Z)

∴sin(α+2β)=sin[(α+β)+β]=sin(α+β)cosβ+cos(α+β)sinβ.
3sinα=3sin[(α+β)-β]=3sin(α+β)cosβ-3cos(α+β)sinβ.
∴sin(α+β)cosβ+cos(α+β)sinβ=3sin(α+β)cosβ-3cos(α+β)sinβ.
可得sin(α+β)cosβ=2cos(α+β)sinβ,
tan(α+β)
tanβ
=2.
故答案为:2.
点评:本题考查两角和与差的三角函数,角的变换,基本知识的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

?x∈[0,
π
2
]
,使关于x的方程sin2x-cosx-a=0有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α为第三象限角,f(α)=
1+sinα
1-sinα
-
1-sinα
1+sinα

(Ⅰ)化简f(α);
(Ⅱ)设g(α)=f(-α)+
2
tanα
,求函数g(α)的最小值,并求取最小值时的α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若[x]表示不大于x的最大整数,则使得[log21]+[log22]+[log23]+…+[log2n]≥2007成立的正整数n的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图及部分数据如图所示,正视图、侧视图和俯视图都是等腰直角三角形,则该几何体的外接球的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

“若x>y,则x2>y2”的逆否命题是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=
5
5
,则sin4α-cos4α的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A(0,-5),B(0,5),若曲线C上存在点M,使|MA|-|MB|=8,则称曲线C为“含特点曲线”.给出下列四条曲线:
①x2+y2=17; ②
x2
16
+
y2
9
=1
; ③
x2
9
-
y2
16
=1
; ④y2=
32
3
x

其中为“含特点曲线”的是
 
.(写出所有“含特点曲线”的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log 
1
2
4)的值为
 

查看答案和解析>>

同步练习册答案