精英家教网 > 高中数学 > 题目详情
8.化简;($\sqrt{8}$)${\;}^{-\frac{2}{3}}$×($\root{3}{10^2}$)${\;}^{\frac{9}{2}}$÷$\sqrt{1{0}^{5}}$.

分析 利用分数指数幂的运算性质即可得出.

解答 解:原式=${2}^{\frac{3}{2}×(-\frac{2}{3})}$×$1{0}^{\frac{2}{3}×\frac{9}{2}}$×$1{0}^{-\frac{5}{2}}$
=$\frac{1}{2}×1{0}^{3-\frac{5}{2}}$
=$\frac{\sqrt{10}}{2}$.

点评 本题考查了分数指数幂的运算性质,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知z为复数,则下列各式成立的是(  )
A.|z|2=z2B.|z|2=|z2|C.z•$\overline{z}$=1D.z•$\overline{z}$=z2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设集合A={a1,a2,…,a11}内元素满足一下三个条件:
①ai>0(i=1,2,…,11);
②a1<a2<…<a11
③?ai∈A,唯一存在aj∈A使得aiaj=1(i,j=1,2,…,11)
则函数f(n)=(1+a1)(1-1a1)+(1+a2)(1-1a2)+…+(1+an)(1-1an)(n=1,…,11)值域内元素的个数为6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设log23=a,则log64=$\frac{2}{1+a}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知bcosC+ccosB=2b,
(1)求证:a=2b;
(2)若c=$\sqrt{3}$b,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.化简三角式$\frac{2cos55°-\sqrt{3}sin5°}{cos5°}$=(  )
A.$\frac{\sqrt{3}}{2}$B.1C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a=0.8-0.7,b=0.8-0.9,c=1.1-0.8,则a,b,c的大小关系是(  )
A.c>a>bB.c>b>aC.a>b>cD.b>a>c

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:x>0,y>0,x+2$\sqrt{xy}$-15y=0,求$\frac{x+y}{x+\sqrt{xy}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知圆上有两点A(1,-1),B(2,3),且圆心在直线2x-y-1=1上,求圆的方程.

查看答案和解析>>

同步练习册答案