精英家教网 > 高中数学 > 题目详情
8.求经过点A(0,-1),与直线x+y-1=0相切,且圆心在直线y=-2x上的圆的标准方程.

分析 根据圆心在直线y=-2x上,设出圆心坐标和半径,写出圆的标准方程,把点A的坐标代入圆的方程得到一个关系式,由点到直线的距离公式表示圆心到直线x+y=1的距离,让距离等于圆的半径列出另一个关系式,两者联立即可求出圆心坐标和半径,把圆心坐标和半径代入即可写出圆的标准方程.

解答 解:因为圆心在直线y=-2x上,设圆心坐标为(a,-2a)(1分)
设圆的方程为(x-a)2+(y+2a)2=r2(2分)
圆经过点A(0,-1)和直线x+y=1相切,
所以有$\left\{\begin{array}{l}{{a}^{2}+(2a-1)^{2}={r}^{2}}\\{\frac{|a-2a-1|}{\sqrt{2}}=r}\end{array}\right.$(8分)
解得r=$\sqrt{2}$,a=1或r=$\frac{5\sqrt{2}}{9}$,a=$\frac{1}{9}$(12分)
所以圆的方程为(x-1)2+(y+2)2=2或(x-$\frac{1}{9}$)2+(y+$\frac{2}{9}$)2=$\frac{50}{81}$.(14分)

点评 此题考查学生灵活运用点到直线的距离公式化简求值,掌握直线与圆相切时满足的条件,会利用待定系数法求圆的标准方程,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.(1)求函数f(x)=x2-2x+2.在区间[$\frac{1}{2}$,3]上的最大值和最小值;
(2)已知f(x)=ax3+bx-4,若f(2)=6,求f(-2)的值
(3)计算0.0081${\;}^{\frac{1}{4}}$+(4${\;}^{-\frac{3}{4}}$)2+($\sqrt{8}$)${\;}^{-\frac{4}{3}}$-16-0.75+3${\;}^{lo{g}_{3}4}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆$\frac{x^2}{9}$+$\frac{y^2}{5}$=1,P(1,1)为椭圆内一点,F1为椭圆的左焦点,M为椭圆上一动点:
(理)则|MP|+$\frac{3}{2}$|MF1|的最小值为$\frac{11}{2}$;
(文)则|MP|+|MF1|的取值范围为(6-$\sqrt{2}$,6+$\sqrt{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.写出命题“若x2+x-2≤0,则|2x+1|<1”的逆命题、否命题、逆否命题,并分别判断它们的真假.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=loga(x-1)+4(a>0且a≠1)恒过定点P,若点P也在幂函数g(x)的图象上,则g(3)=9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知{(x,y)|ax+y+b=0}∩{(x,y)|x+y+1=0}=∅,则a,b所满足的条件是a=1且b≠1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+3cos2x,x∈R.求:
(I)求函数f(x)的最小正周期;
(II)求函数f(x)在区间[-$\frac{π}{6},\frac{π}{3}$]上的值域.
(Ⅲ)描述如何由y=sinx的图象变换得到函数f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在数列{an}中,a1=1,an+1-an=2n,n∈N+则an=2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.解关于x的不等式
(1)-6x2-x+2≤0        
(2)mx2-2mx-2x+4>0.

查看答案和解析>>

同步练习册答案