【题目】已知A(3,0),B(0,3)C(cosα,sinα),O为原点.
(1)若
∥
, 求tanα的值;
(2)若![]()
![]()
, 求sin2α的值.
【答案】解:(1)∵A(3,0),B(0,3),C(cosα,sinα),
∴
=(cosα,sinα),
=(﹣3,3),
∵
∥
,∴3cosα+3sinα=0,解得tanα=﹣1
(2)由题意得,
=(coaα﹣3,sinα),
=(coaα,sinα﹣3),
∵
⊥
,∴coaα(coaα﹣3)+sinα(sinα﹣3)=0,
1﹣3(sinα+coaα)=0,即sinα+coaα=
,
两边平方后得,sin2α=﹣
,
【解析】(1)根据条件求出向量
和
的坐标,利用向量共线的坐标表示以及商的关系,,求出tanα的值;
(2)根据条件求出向量
和
的坐标,利用
列出方程,再由倍角的正弦公式和平方关系求出sin2α的值;
【考点精析】认真审题,首先需要了解数量积判断两个平面向量的垂直关系(若平面
的法向量为
,平面
的法向量为
,要证
,只需证
,即证
;即:两平面垂直
两平面的法向量垂直).
科目:高中数学 来源: 题型:
【题目】给出下列五个结论:
①在△ABC中,若sinA>sinB,则必有cosA<cosB;
②在△ABC中,若a,b,c成等比数列,则角B的取值范围为
;
③等比数列{an}中,若a3=2,a7=8,则a5=±4;
④等差数列{an}的前n项和为Sn , S10<0且S11=0,满足Sn≥Sk对n∈N*恒成立,则正整数k构成集合为{5,6}
⑤若关于x的不等式(a2﹣1)x2﹣(a﹣1)x﹣1<0的解集为R,则a的取值范围为
.
其中正确结论的序号是 . (填上所有正确结论的序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,正确的是( )
①两个平面同时垂直第三个平面,则这两个平面可能互相垂直
②方程
表示经过第一、二、三象限的直线
③若一个平面中有4个不共线的点到另一个平面的距离相等,则这两个平面平行
④方程
可以表示经过两点
的任意直线
A. ②③ B. ①④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=log2(m+
)(m∈R,且m>0).
(1)求函数f(x)的定义域;
(2)若函数f(x)在(4,+∞)上单调递增,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b,c为△ABC的三个内角A,B,C的对边,向量
=(
, ﹣1),
=(cosA,sinA).若
⊥
, 且αcosB+bcosA=csinC,则角A,B的大小分别为( )
A.
,![]()
B.
,![]()
C.
,![]()
D.
,![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设
多个分支机构,需要国内公司外派大量
后、
后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从
后和
后的员工中随机调查了
位,得到数据如下表:
愿意被外派 | 不愿意被外派 | 合计 | |
|
|
|
|
|
|
|
|
合计 |
|
|
|
(Ⅰ)根据调查的数据,是否有
以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;
(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排
名参与调查的
后、
后员工参加.
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
;
后员工中有愿意被外派的
人和不愿意被外派的
人报名参加,从中随机选出
人,记选到愿意被外派的人数为
,求
的概率.
参考数据:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(参考公式:
,其中
).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将圆
为参数)上的每一点的横坐标保持不变,纵坐标变为原来的
倍,得到曲线![]()
(1)求出
的普通方程;
(2)设直线
:
与
的交点为
,
,以坐标原点为极点,
轴正半轴为极轴建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com