精英家教网 > 高中数学 > 题目详情
3.设复数zn=xn+i•yn,其中xnyn∈R,n∈N*,i为虚数单位,zn+1=(1+i)•zn,z1=3+4i,复数zn在复平面上对应的点为Zn
(1)求复数z2,z3,z4的值;
(2)是否存在正整数n使得$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$?若存在,求出所有满足条件的n;若不存在,请说明理由;
(3)求数列{xn•yn}的前102项之和.

分析 (1)利用已知条件之间求解z2,z3,z4
(2)求出${z_n}={(1+i)^{n-1}}{z_1}$,利用复数的幂运算,求解即可.
(3)通过${z_{n+4}}={(1+i)^4}{z_n}=-4{z_n}$,推出xn+4=-4xn,yn+4=-4yn,得到xn+4yn+4=16xnyn,然后求解数列的和即可.

解答 本题(18分),第1小题(4分),第2小题(6分),第3小题(8分).
解:(1)z2=(1+i)(3+4i)=-1+7i,z3=-8+6i,z4=-14-2i.…(4分)
(算错一个扣(1分),即算对一个得(2分),算对两个得3分)
(2)若$\overrightarrow{O{Z_n}}$∥$\overrightarrow{O{Z_1}}$,则存在实数λ,使得$\overrightarrow{O{Z_n}}=λ\overrightarrow{O{Z_1}}$,故zn=λ•z1
即(xn,yn)=λ(x1,y1),…(3分)
又zn+1=(1+i)zn,故${z_n}={(1+i)^{n-1}}{z_1}$,即(1+i)n-1=λ为实数,…(5分)
故n-1为4的倍数,即n-1=4k,n=4k+1,k∈N.   …(6分)
(3)因为${z_{n+4}}={(1+i)^4}{z_n}=-4{z_n}$,故xn+4=-4xn,yn+4=-4yn,…(2分)
所以xn+4yn+4=16xnyn,…(3分)
又x1y1=12,x2y2=-7,x3y3=-48,x4y4=28,
x1y1+x2y2+x3y3+…+x100y100
=(x1y1+x2y2+x3y3+x4y4)+(x5y5+x6y6+x7y7+x8y8)+…+(x97y97+x98y98+x99y99+x100y100
=$(12-7-48+28)•\frac{{1-{{16}^{25}}}}{1-16}=1-{2^{100}}$,…(6分)
而${x_{101}}{y_{101}}={16^{25}}{x_1}{y_1}=12×{2^{100}}$,${x_{102}}{y_{102}}={16^{25}}{x_2}{y_2}=-7×{2^{100}}$,…(7分)
所以数列{xnyn}的前102项之和为1-2100+12×2100-7×2100=1+2102.…(8分)

点评 本题考查复数的基本运算,复数的代数形式混合运算,考查数列求和,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)的图象是连续不断的,有如下的对应值表:
x123456
y123.5621.45-7.8211.45-53.76-128.88
则函数y=f(x)在区间[1,6]上的零点至少有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知点A(0,-1),B(3,0),C(1,2),平面区域P是由所有满足$\overrightarrow{AM}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$(2<λ≤m,2<μ≤n)的点M组成的区域,若区域P的面积为6,则m+n的最小值为4+$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某市在“国际禁毒日”期间,连续若干天发布了“珍爱生命,原理毒品”的电视公益广告,期望让更多的市民知道毒品的危害性,禁毒志愿者为了了解这则广告的宣传效果,随机抽取了100名年龄阶段性在[10,20),[20,30),[30,40),[40,50),[50,60)的市民进行问卷调查,由此得到样本频率分布直方图如图所示.
(Ⅰ)求随机抽取的市民中年龄段在[30,40)的人数;
(Ⅱ)从不小于40岁的人中按年龄段分层抽样的方法随机抽取5人,求[50,60)年龄段抽取的人数;
(Ⅲ)从(Ⅱ)中方式得到的5人中再抽取2人作为本次活动的获奖者,记X为年龄在[50,60)年龄段的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列函数中,在其定义域内是增函数而且又是奇函数的是(  )
A.y=2xB.y=2|x|C.y=2x-2-xD.y=2x+2-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=sin22x-sin2xcos2x.
(1)化简函数f(x)的表达式,并求函数f(x)的最小正周期;
(2)若点A(x0,y0)是y=f(x)图象的对称中心,且${x_0}∈[{0,\frac{π}{2}}]$,求点A的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{b}$|=4,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影是$\frac{1}{2}$,则$\overrightarrow{a}$•$\overrightarrow{b}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知复数z(1+i)=2i,则复数z=(  )
A.1+iB.1-iC.$\frac{1}{2}$+$\frac{1}{2}$iD.$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某单位有员工90人,其中女员工有36人,为做某项调查,拟采用分层抽样抽取容量为15的样本,则男员工应选取的人数是9.

查看答案和解析>>

同步练习册答案