【题目】已知函数f(x)=emx﹣lnx﹣2.
(1)若m=1,证明:存在唯一实数t∈( ,1),使得f′(t)=0;
(2)求证:存在0<m<1,使得f(x)>0.
【答案】
(1)证明:m=1时,f(x)=ex﹣lnx﹣2,f′(x)=ex﹣ ,x>0.
显然f′(x)在(0,+∞)上单调递增,又f′( )<0,f′(1)>0,
故存在唯一实数t∈( ,1),使得f′(t)=0
(2)证明:f′(x)=memx﹣ =m(emx﹣ ),
由0<m<1得f′(x)在(0,+∞)上单调递增,
由(1).得mx0=t时,f′(x0)=0,
所以f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
即f(x)的最小值为f(x0)=f( )=et﹣lnt+lnm﹣2,
∵et﹣ =0,∴et= ,t=﹣lnt.
于是f(x0)=f( )= +t+lnm﹣2,所以当lnm>2﹣( +t)时,f(x)>0.
取k=2﹣( +t)<0,故m∈(ek,1)时成立
【解析】(1)m=1时,化简函数f(x)=ex﹣lnx﹣2,求出函数的导数,判断函数的单调性,通过f′( )<0,f′(1)>0,利用零点判定定理证明即可.(2)求出f′(x)=memx﹣ =m(emx﹣ ),利用由0<m<1得f′(x)在(0,+∞)上单调递增,由(1)得mx0=t时,f′(x0)=0,求出函数单调性以及最值,然后证明即可.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥平面ABCD,四边形ABCD为梯形,AD∥BC,BC=6,PA=AD=CD=2,E为BC上一点且BE= BC,PB⊥AE.
(1)求证:AB⊥PE;
(2)求二面角B﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,M(﹣2,0).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,A(ρ,θ)为曲线C上一点,B(ρ,θ+ ),且|BM|=1.
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)求|OA|2+|MA|2的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=x3+ax2+bx(a,b∈R)的图象与x轴相切于一点A(m,0)(m≠0),且f(x)的极大值为 ,则m的值为( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x|+|x﹣1|.
(Ⅰ)若f(x)≥|m﹣1|恒成立,求实数m的最大值M;
(Ⅱ)在(Ⅰ)成立的条件下,正实数a,b满足a2+b2=M,证明:a+b≥2ab.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com