精英家教网 > 高中数学 > 题目详情
设复数z=
3(1-2i)
1-i
则复平面上复数z所对应的点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限
考点:复数代数形式的乘除运算
专题:数系的扩充和复数
分析:直接利用复数代数形式的乘除运算化简后求出复数对应点的坐标,则答案可求.
解答: 解:z=
3(1-2i)
1-i
=
3(1-2i)(1+i)
(1-i)(1+i)
=
9-3i
2
=
9
2
-
3
2
i

∴复平面上复数z所对应的点的坐标为(
9
2
,-
3
2
),位于第四象限.
故选:D.
点评:本题考查了复数代数形式的乘除运算,考查了复数的代数表示法及其几何意义,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知关于x的方程ax2-4ax+1=0的两个实根α,β满足不等式|lgα-lgβ|≤1,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=lgx+x-2在下列哪个区间一定存在零点(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=cos2x-sin2x是(  )
A、最小正周期为2π的奇函数
B、最小正周期为2π的偶函数
C、最小正周期为π的奇函数
D、最小正周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

如果关于x的方程sin2x-(2+a)sinx+2a=0在x∈[-
π
6
6
]上有两个实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2-x,x≤0
4-x2
,0<x≤2
,则
2
-2
f(x)dx的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
bx-a
ax
(a>0,x>0)的图象过点(a,0).
(1)判断函数f(x)在(0.+∞)上的单调并用函数单调性定义加以证明;
(2)若a>
1
5
函数f(x)在[
1
5a
,5a]上的值域是[
1
5a
,5a],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)为奇函数,且满足f(x+4)=f(x),当x∈[0,1]时,f(x)=2x-1
(1)求f(x)在[-1,0)上的解析式
(2)求f(log 
1
2
24)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

4
2
1
x
dx(  )
A、-2ln2
B、ln 2
C、2 ln 2
D、-ln2

查看答案和解析>>

同步练习册答案