精英家教网 > 高中数学 > 题目详情
设函数
(1)当a=5时,求函数f(x)的定义域;
(2)若函数f(x)的定义域为R,试求a的取值范围.
解:(1)由题设知:|x+1|+|x﹣2|﹣5≥0,
在同一坐标系中作出函数y=|x+1|+|x﹣2|和y=5的图象,
 
由图象知定义域为(﹣∞,﹣2]∪[3,+∞).
(2)由题设知,当x∈R时,恒有|x+1|+|x﹣2|﹣a≥0,
即|x+1|+|x﹣2|≥a,
又由(1)|x+1|+|x﹣2|≥3,
∴a≤3.          
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分高☆考♂资♀源*12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年河南省原名校高三下学期第二次联考文科数学试卷(解析版) 题型:解答题

设函数

(1)当a=l时,求函数的极值;

(2)当a2时,讨论函数的单调性;

(3)若对任意a∈(2,3)及任意x1,x2∈[1,2],恒有成立,求

实数m的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年甘肃省高三上学期第二次月考数学试卷(解析版) 题型:解答题

(本小题满分12分)

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年海南省高三教学质量监测理科数学卷 题型:解答题

(选修4—5:不等式选讲)设函数

(1)当a=-5时,求函数的定义域。

(2)若函数的定义域为R,求实数a的取值范围。

 

查看答案和解析>>

科目:高中数学 来源:2010年高考试题(江西卷)解析版(理) 题型:解答题

 

设函数

(1)当a=1时,求的单调区间。

(2)若上的最大值为,求a的值。

 

查看答案和解析>>

同步练习册答案