分析 (1)根据导数和函数的极值得关系即可求出b的值,
(2)先求出其导函数,再让其导函数大于0对应区间为增区间,小于0对应区间为减区间即可.(注意是在定义域内找单调区间.)
(3)由(2)可知f(x)在[1,e]上单调递减,即可求出最值.
解答 解:(1)∵f(x)=-$\frac{1}{2}$x2+blnx,x>0
∴f′(x)=-x+$\frac{b}{x}$,
∵函数f(x)=-$\frac{1}{2}$x2+blnx在x=1处取得极值,
∴1是-x+$\frac{b}{x}$=0的根,
∴-1+b=0,
解得b=1;
(2)由于f′(x)=-x+$\frac{1}{x}$,
令f′(x)=f′(x)=-x+$\frac{1}{x}$=0,解得x=1或x=-1(舍去),
当f′(x)>0,即0<x<1时,函数f(x)单调递增,
当f′(x)<0,即x>1时,函数f(x)单调递减,
故f(x)在(0,1)上单调递增,在(1,+∞)上单调递减;
(3)∵f(x)=-$\frac{1}{2}$x2+lnx,
由(2)可知f(x)在[1,e]上单调递减,
∴f(x)max=f(1)=-$\frac{1}{2}$.
点评 本题考查了导数和函数的极值最值的关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-$\frac{1}{e}$ | B. | 2-$\frac{2}{e}$ | C. | 1+2e2 | D. | $\frac{2}{e}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}$-2$\overrightarrow{b}$ | B. | 2$\overrightarrow{a}$-$\overrightarrow{b}$ | C. | 2$\overrightarrow{a}$+$\overrightarrow{b}$ | D. | $\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,2$\sqrt{3}$-1) | B. | (-∞,-2$\sqrt{3}$+1) | C. | (-2$\sqrt{3}$+1,2$\sqrt{3}$-1) | D. | (-2$\sqrt{3}$+1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com