分析 由题意可知:P在双曲线的准线上,由△PMF等腰三角形,c-$\frac{{a}^{2}}{c}$=$\frac{\sqrt{2}a}{2}$,由b2=c2-a2,即可求得题意的离心率.
解答 解:由题意可知:直线与双曲线的准线方程为x=$\frac{{a}^{2}}{c}$,
由△PMF等腰三角形,
则c-$\frac{{a}^{2}}{c}$=$\frac{\sqrt{2}a}{2}$,整理得:b2=$\frac{\sqrt{2}}{2}$ac,两边平方可知:b4=$\frac{1}{2}$a2c2,
由b2=c2-a2,2c4-5a2c2+2a4=0
椭圆的离心率e=$\frac{c}{a}$,则2e4-5e2+2=0,解得:e2=2或e2=$\frac{1}{2}$,
由e>1,则e=$\sqrt{2}$,
故答案为:$\sqrt{2}$.![]()
点评 本题考查双曲线的简单几何性质,考查计算能力,数形结合思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{1-\sqrt{5}}{2}$,$\frac{1+\sqrt{5}}{2}$) | B. | (-1,$\frac{1+\sqrt{5}}{2}$) | C. | ($\frac{1-\sqrt{5}}{2}$,0) | D. | ($\frac{1-\sqrt{5}}{2}$,-$\frac{1}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{128}$ | B. | $\frac{3}{256}$ | C. | $\frac{1}{64}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{25\sqrt{3}}}{4}$或$\frac{20}{3}$ | B. | $\frac{25\sqrt{3}}{2}$或$\frac{50}{3}$ | C. | $\frac{25\sqrt{3}}{4}$或$\frac{10}{3}$ | D. | $\frac{25\sqrt{3}}{2}$或$\frac{20}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com