精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=2|cosx|sinx+sin2x,给出下列四个命题:
①函数f(x)的图象关于直线$x=\frac{π}{4}$对称;
②函数f(x)在区间$[-\frac{π}{4},\frac{π}{4}]$上单调递增;
③函数f(x)的最小正周期为π;
④函数f(x)的值域为[-2,2].
其中真命题的序号是②④.(将你认为真命题的序号都填上)

分析 利用三角函数的周期性、单调性、值域以及它的图象的对称性,判断各个选项是否正确,从而得出结论.

解答 解:对于函数f(x)=2|cosx|sinx+sin2x,由于f(-$\frac{3π}{4}$)=-2,f($\frac{5π}{4}$)=0,∴f(-$\frac{3π}{4}$)≠f($\frac{5π}{4}$),
故f(x)的图象不关于直线$x=\frac{π}{4}$对称,故排除①.
在区间$[-\frac{π}{4},\frac{π}{4}]$上,2x∈[-$\frac{π}{2}$,$\frac{π}{2}$],f(x)=2|cosx|sinx+sin2x=2sin2x 单调递增,故②正确.
函数f($\frac{π}{3}$)=$\sqrt{3}$,f($\frac{4π}{3}$)=0,∴f($\frac{π}{3}$)≠f($\frac{4π}{3}$),故函数f(x)的最小正周期不是π,故③错误.
当cosx≥0时,f(x)=2|cosx|sinx+sin2x=2sinxcosx+sin2x=2sin2x,故它的最大值为2,最小值为-2;
当cosx<0时,f(x)=2|cosx|sinx+sin2x=-2sinxcosx+sin2x=0,
综合可得,函数f(x)的最大值为2,最小值为-2,故④正确,
故答案为:②④.

点评 本题主要考查三角函数的周期性、单调性、值域以及它的图象的对称性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.(文)设F是双曲线E:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$右焦点,$P(\frac{a^2}{c},\frac{{\sqrt{2}a}}{2})$为直线上一点,直线垂直于x轴,垂足为M,若△PMF等腰三角形,则E的离心率为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示,SA⊥平面ABC,AB⊥BC,过A作SB的垂线,垂足为E,过E作SC的垂线,垂足为F.
(1)求证:AF⊥SC;
(2)若SA=AB=BC=2,求平面AEF与平面ABC所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.一个口袋中装有2个白球和3个黑球,这5个球除颜色外完全相同,从中摸出2个球,则这2个球颜色相同的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{5}$C.$\frac{1}{2}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.阅读如图的程序框图,运行相应的程序,则输出的S的值为(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{41}{24}$D.$\frac{103}{60}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,a,b,c分别是角A,B,C的对边,且b,c是关于x的一元二次方程x2+mx-a2+b2+c2=0的两根.
(1)求角A的大小;
(2)已知a=$\sqrt{3}$,设B=θ,△ABC的面积为y,求y=f(θ)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x)满足:当x≥0时,f(x)=log2(x+m),则f(m-16)=(  )
A.4B.-4C.2D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=ax2+(x-1)ex
(1)当a=-$\frac{e+1}{2}$时,求f(x)在点P(1,f(1))处的切线方程;
(2)讨论f(x)的单调性;
(3)当-$\frac{1}{2}$<a<-$\frac{1}{2e}$时,f(x)是否存在极值?若存在,求所有极值的和的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义域为I的函数f(x),若存在开区间(a,b)⊆I和正的常数c,使得任意x∈(a,b)都有-c<f(x)<c,且对任意x∉(a,b)都有|f(x)|=c恒成立,则称f(x)为区间I上的“Z型”函数,给出下列函数:①f(x)=$\left\{\begin{array}{l}{2,x≤1}\\{4-2x,1<x<3}\\{-2,x≥3}\end{array}\right.$;②f(x)=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{0,x<0}\end{array}\right.$;③f(x)=|sinx|;④f(x)=x+cosx,其中是区间I上的“Z型”函数的是①(只需写出序号即可)

查看答案和解析>>

同步练习册答案