分析 利用三角函数的周期性、单调性、值域以及它的图象的对称性,判断各个选项是否正确,从而得出结论.
解答 解:对于函数f(x)=2|cosx|sinx+sin2x,由于f(-$\frac{3π}{4}$)=-2,f($\frac{5π}{4}$)=0,∴f(-$\frac{3π}{4}$)≠f($\frac{5π}{4}$),
故f(x)的图象不关于直线$x=\frac{π}{4}$对称,故排除①.
在区间$[-\frac{π}{4},\frac{π}{4}]$上,2x∈[-$\frac{π}{2}$,$\frac{π}{2}$],f(x)=2|cosx|sinx+sin2x=2sin2x 单调递增,故②正确.
函数f($\frac{π}{3}$)=$\sqrt{3}$,f($\frac{4π}{3}$)=0,∴f($\frac{π}{3}$)≠f($\frac{4π}{3}$),故函数f(x)的最小正周期不是π,故③错误.
当cosx≥0时,f(x)=2|cosx|sinx+sin2x=2sinxcosx+sin2x=2sin2x,故它的最大值为2,最小值为-2;
当cosx<0时,f(x)=2|cosx|sinx+sin2x=-2sinxcosx+sin2x=0,
综合可得,函数f(x)的最大值为2,最小值为-2,故④正确,
故答案为:②④.
点评 本题主要考查三角函数的周期性、单调性、值域以及它的图象的对称性,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{2}$ | B. | $\frac{5}{3}$ | C. | $\frac{41}{24}$ | D. | $\frac{103}{60}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com