已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4
,半径小于5.
(Ⅰ)求直线PQ与圆C的方程;
(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.
(Ⅰ) (x-1)2+y2=13.(Ⅱ)y=-x+4或y=-x-3.
解析试题分析:(Ⅰ)直线PQ的方程为:x+y-2=0,
设圆心C(a,b)半径为r,
由于线段PQ的垂直平分线的方程是y-
=x-
,即y=x-1,
所以b=a-1. ①
又由在y轴上截得的线段长为4
,知r2=12+a2,
可得(a+1)2+(b-3)2=12+a2, ②
由①②得: a=1,b=0或a=5,b=4.
当a=1,b=0时,r2=13满足题意,
当a=5,b=4时,r2=37不满足题意,
故圆C的方程为(x-1)2+y2=13.
(Ⅱ)设直线l的方程为y=-x+m,A(x1,m-x1),B(x2,m-x2),
由题意可知OA⊥OB,即
=0,
∴x1x2+(m-x1)(m-x2)=0, 化简得2x1x2-m(x1+x2)+m2=0. ③
由
得2x2-2(m+1)x+m2-12=0,
∴x1+x2=m+1,x1x2=
.
代入③式,得m2-m·(1+m)+m2-12=0,
∴m=4或m=-3,经检验都满足判别式Δ>0,
∴y=-x+4或y=-x-3.
考点:圆的标准方程,直线方程,直线与圆的位置关系,向量垂直的条件。
点评:中档题,求圆的方程,一般利用待定系数法,本题解法是从确定圆心、半径入手,体现解题的灵活性。直线与圆的位置关系问题,往往涉及圆的“特征三角形”,利用勾股定理解决弦长计算问题。利用代数法研究直线与圆的位置关系,常常应用韦达定理,简化解题过程。
科目:高中数学 来源: 题型:解答题
已知
是抛物线
上的点,
是
的焦点, 以
为直径的圆
与
轴的另一个交点为
.
(Ⅰ)求
与
的方程;
(Ⅱ)过点
且斜率大于零的直线
与抛物线
交于
两点,
为坐标原点,
的面积为
,证明:直线
与圆
相切.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,点
,直线
,设圆
的半径为1, 圆心在
上.![]()
(1)若圆心
也在直线
上,过点
作圆
的切线,求切线方程;
(2)若圆
上存在点
,使
,求圆心
的横坐标
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知:以点C (t,
)(t∈R , t ≠ 0)为圆心的圆与
轴交于点O, A,与y轴交于点O, B,其中O为原点.
(Ⅰ)求证:△OAB的面积为定值;
(Ⅱ)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com