已知:以点C (t,
)(t∈R , t ≠ 0)为圆心的圆与
轴交于点O, A,与y轴交于点O, B,其中O为原点.
(Ⅰ)求证:△OAB的面积为定值;
(Ⅱ)设直线y = –2x+4与圆C交于点M, N,若|OM| = |ON|,求圆C的方程.
科目:高中数学 来源: 题型:解答题
已知圆C经过P(4,-2),Q(-1,3)两点,且在y轴上截得的线段长为4
,半径小于5.
(Ⅰ)求直线PQ与圆C的方程;
(Ⅱ)若直线l∥PQ,直线l与圆C交于点A,B且以线段AB为直径的圆经过坐标原点,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
动圆M过定点A(-
,0),且与定圆A´:(x-
)2+y2=12相切.![]()
(1)求动圆圆心M的轨迹C的方程;
(2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知圆
,圆
.![]()
(1)若过点
的直线
被圆
截得的弦长为
,求直线
的方程;
(2)设动圆
同时平分圆
、圆
的周长.
①求证:动圆圆心
在一条定直线上运动;
②动圆
是否过定点?若过,求出定点的坐标;若不过,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
平面直角坐标系
中,直线
截以原点
为圆心的圆所得的弦长为![]()
(1)求圆
的方程;
(2)若直线
与圆
切于第一象限,且与坐标轴交于
,当
长最小时,求直线
的方程;
(3)问是否存在斜率为
的直线
,使
被圆
截得的弦为
,以
为直径的圆经过原点.若存在,写出直线
的方程;若不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com