精英家教网 > 高中数学 > 题目详情

已知f(x)=loga数学公式(a>0,a≠1).
(1)判断f(x)在(1,+∞)上的单调性,并加以证明;
(2)当x∈(r,a-2)时,f(x)的值域为(1,+∞),求a与r的值;
(3)若f(x)≥loga2x,求x的取值范围.

解:(1)任取1<x1<x2,则
f(x2)-f(x1)=loga-loga
=loga
=loga
又∵x2>x1>1,∴x1-x2<x2-x1
∴0<x1x2-x2+x1-1<x1x2-x1+x2-1.
∴0<<1.
当a>1时,f(x2)-f(x1)<0,
∴f(x)在(1,+∞)上是减函数;
当0<a<1时,f(x2)-f(x1)>0,
∴f(x)在(1,+∞)上是增函数.
(2)由>0得x∈(-∞,-1)∪(1,+∞).
=1+≠1,∴f(x)≠0.
当a>1时,
∵x>1?f(x)>0,x<-1?f(x)<0,
∴要使f(x)的值域是(1,+∞),只有x>1.
又∵f(x)在(1,+∞)上是减函数,
∴f-1(x)在(1,+∞)上也是减函数.
∴f(x)>1?1<x<f-1(1)=

当0<a<1时,
∵x>1?f(x)<0,x<-1?f(x)>0,
∴要使值域是(1,+∞),只有x<-1.
又∵f(x)在(-∞,-1)上是增函数,
∴f(x)>1?-1>x>f-1(1)=
无解.
综上,得a=2+,r=1.
(3)由f(x)≥loga2x得
当a>1时,?<x<且x>1.
∴1<x<
当0<a<1时,
∴x>
分析:(1)利用函数单调性的定义,通过对a分类讨论判断出f(x)的单调性.
(2)求出函数的定义域,对a分类讨论求函数的值域;利用原函数与其反函数的关系列出方程,求出a与r.
(3)对a分类讨论,利用函数的单调性脱去对数符号,解不等式组求出解集.
点评:本题考查函数单调性的定义、原函数与反函数的关系、利用对数函数的单调性解对数不等式、分类讨论的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=
log
(4x+1)
4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)为R上的奇函数,当x>0时,f(x)=3x,那么f(log
 
4
1
2
)的值为
-9
-9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义域为R上的奇函数,且当x>0时有f(x)=log 
110
x

(1)求f(x)的解析式;  
(2)解不等式f(x)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,f(x)=log 
1
4
x,那么f(-
1
2
)的值是(  )
A、
1
2
B、-
1
2
C、2
D、-2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=
log(4x+1)4
+kx是偶函数,其中x∈R,且k为常数.
(1)求k的值;
(2)记g(x)=4f(x)求x∈[0,2]时,函数个g(x)的最大值.

查看答案和解析>>

同步练习册答案