精英家教网 > 高中数学 > 题目详情
20.已知0<α<π,sin(π-α)+cos(π+α)=m.
(1)当m=1时,求α;
(2)当$m=\frac{{\sqrt{5}}}{5}$时,求tanα的值.

分析 (1)利用诱导公式、同角三角函数的基本关系,求得sinαcosα=0,结合0<α<π,可得cosα=0,从而求得α的值.
(2)当$m=\frac{{\sqrt{5}}}{5}$时,$sinα-cosα=\frac{{\sqrt{5}}}{5}$,由此利用同角三角函数的基本关系求得sinα+cosα的值,可得sinα和cosα的值,从而求得tanα的值.

解答 解:(1)由已知得:sinα-cosα=1,所以1-2sinαcosα=1,∴sinαcosα=0,
又0<α<π,∴cosα=0,∴$α=\frac{π}{2}$.
(2)当$m=\frac{{\sqrt{5}}}{5}$时,$sinα-cosα=\frac{{\sqrt{5}}}{5}$.①
$1-2sinαcosα=\frac{1}{5}$,∴$sinαcosα=\frac{2}{5}>0$,∴$0<α<\frac{π}{2}$,
∵${({sinα+cosα})^2}=1+2sinαcosα=\frac{9}{5}$,∴$sinα+cosα=\frac{{3\sqrt{5}}}{5}$.②
由①②可得$sinα=\frac{{2\sqrt{5}}}{5}$,$cosα=\frac{{\sqrt{5}}}{5}$,
∴tanα=2.

点评 本题主要考查同角三角函数的基本关系,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设随机变量X~N(5,σ2),若P(X>10-a)=0.4,则P(X>a)=(  )
A.0.6B.0.4C.0.3D.0.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4),关于时间x(x≥0)的函数关系式分别为f1(x)=2x-1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最后面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确的序号为(  )
A.①②B.①②③④C.②③④⑤D.③④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设变量x,y满足约束条件$\left\{\begin{array}{l}x+2y≤5\\ 2x+y≤4\\ x≥0\\ y≥0\end{array}\right.$,则目标函数z=3x+2y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π),其部分图象如图,则函数f(x)的解析式为(  )
A.$f(x)=2sin({\frac{1}{2}x+\frac{π}{4}})$B.$f(x)=2sin({\frac{1}{2}x+\frac{3π}{4}})$C.$f(x)=2sin({\frac{1}{4}x+\frac{3π}{4}})$D.$f(x)=2sin({2x+\frac{π}{4}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.执行如图程序,输出S的值为(  )
A.$\frac{1007}{2015}$B.$\frac{1008}{2017}$C.$\frac{2016}{2017}$D.$\frac{2015}{4032}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知球的直径SC=6,A、B是该球球面上的两点,且AB=SA=SB=3,则棱锥S-ABC的体积为(  )
A.$\frac{{3\sqrt{2}}}{4}$B.$\frac{{9\sqrt{2}}}{4}$C.$\frac{{3\sqrt{2}}}{2}$D.$\frac{{9\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.执行如图所示的程序框图,则输出S的值为(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.0D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知正四棱锥的底面边长是2,侧棱长是$\sqrt{3}$,则该正四棱锥的体积为$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案