| A. | -1 | B. | 7 | C. | 2 | D. | 5 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{x-y+2≥0}\\{x+y-4≥0}\\{y≥1}\end{array}\right.$作出可行域,![]()
联立$\left\{\begin{array}{l}{x-y+2=0}\\{x+y-4=0}\end{array}\right.$,解得A(1,3).
化目标函数z=y+2x为y=-2x+z,由图可知,当直线y=-2x+z过A时,直线在y轴上的截距最小,z有最小值为5.
故选:D.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{3}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}-\sqrt{2}$ | B. | $\sqrt{2}-1$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{3}{2},2})$ | B. | $({1,\frac{3}{2}}]∪\left\{{2,6}\right\}$ | C. | {2,6} | D. | $[{\frac{3}{2},\frac{5}{3}}]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com